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Abstract The dynamic approach posits that a presupposition must be satis-

fied in its local context. But how is a local context derived from the global

one? Extant dynamic analyses must specify in the lexical entry of any op-

erator what its ‘Context Change Potential’ is, and for this very reason they

fail to be sufficiently explanatory. To circumvent the problem, we revise

two assumptions of the dynamic approach: we take the update process to

be derivative from a classical, non-dynamic semantics — which obviates the

need for dynamic lexical entries; and we deny that a local context encodes

what the speech act participants ‘take for granted.’ Instead, we take the

local context of an expression E in a sentence S to be the smallest domain

that one may restrict attention to when assessing E without jeopardizing

the truth conditions of S. To match the results of dynamic semantics, local

contexts must be computed incrementally, using only information about the

expressions that precede E. This version of the theory can be shown to be

nearly equivalent to the dynamic theory of Heim 1983 — but unlike the latter,

it is entirely predictive. We also suggest that local contexts can, at some

cost, be computed symmetrically, taking into account information about all

of S(except E); this leads to gradient predictions, whose assessment is left

for future research.
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The notion of ‘local context’ has played a key role in the analysis of
presupposition projection since the pioneering works of Stalnaker (1974),
Karttunen (1974) and Heim (1983). These authors took local contexts to result
from a rational process of belief update (Stalnaker) or from an enriched
compositional semantics (Karttunen and Heim). We argue that these accounts
were insufficiently predictive, and we offer an alternative analysis that ad-
dresses this challenge. The intuition we develop is that the local context of an
expression E represents the smallest domain of objects that the interpreter
needs to consider when he assesses the contribution of E to the meaning of
the discourse. We take the computation of the local context to be preferably
done ‘on the fly,’ as soon as E is processed — with the result that information
that comes before E is typically taken into account, while information that
comes after E isn’t. Our analysis is couched in a classical, non-dynamic se-
mantics; it predicts in great generality the value of any local context once the
syntax and bivalent semantics of a language have been specified. By adopting
the traditional assumption that a presupposition must be satisfied in its local
context, we obtain a predictive account of presupposition projection without
recourse to dynamic semantics.

Our project is introduced in Section 1, its core is developed in Section 2,
and some extensions are considered in Section 3. The analysis is compared
with another non-dynamic account, the Transparency theory, in Appendix A;
and Appendices B–D offer a detailed implementation of the framework.

1 Local Contexts and Dynamic Semantics

1.1 The Dynamic Approach

A powerful intuition behind much recent research is that a presupposition
must be satisfied in the context in which it is evaluated. The relevant notion of
context is, in Stalnaker’s (1978) terminology, the ‘context set,’ which encodes
what the speech act participants take for granted (we will often say ‘context’
for brevity).1 But an unadorned version of this analysis faces immediate

1 In the literature on indexicals, the term ‘context’ refers to an object that determines the
speaker, time and world of the utterance; the indexical notion should be clearly distinguished
from the presuppositional one. A context set can sometimes be equated to a set of contexts
in the indexical sense (e.g. Dekker 2000, Schlenker 2004).
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difficulties with complex sentences: John is incompetent and he knows that he
is does not require that the speech act participants already take for granted
that John is incompetent, since this proposition is asserted, not presupposed.
The dynamic approach solves the problem by postulating that the second
conjunct is evaluated with respect to a local context, obtained by updating
the global one with the content of the first conjunct; this explains why the
presupposition of the second conjunct is in this case automatically satisfied.
This analysis is captured by the dynamic rule stated in (1): the update of
a context C with a conjunction is the successive update of C with each
conjunct.

(1) C[F andG] = C[F][G]

Despite its considerable appeal, standard versions of this analysis suffer
from several well-known deficiencies. We will only discuss two versions
here: Stalnaker’s (1974) and Heim’s (1983). In Stalnaker’s pragmatic analysis,
the dynamic approach takes the update to result from a rational process of
information exchange. Stalnaker’s theory works beautifully for unembedded
conjunctions because the assertion of a conjunction can plausibly be equated
with the successive assertion of each conjunct; on the assumption that the
context is updated after each act of assertion, the update rule in (1) falls
out naturally. But this analysis does not easily extend to environments
in which an expression does not have assertive force, as happens when a
presupposition trigger appears in the scope of other connectives or operators:

(2) a. John is not incompetent, or he is aware that he is.
b. None of my students is both incompetent and aware of it.

In (2a) aware is in the scope of a disjunction, which the speaker can
assert without being committed to either disjunct; it is unclear how an
assertion-based analysis of local contexts can work in this case. In (2b),
the presupposition of the second conjunct is somehow satisfied by the first
conjunct, but an assertion-based analysis cannot easily explain this fact: first,
because the context set would in the present case need to have predicative
rather than propositional type (and it isn’t clear what it means to believe
something of predicative type); second, because in any event both conjuncts
are in the scope of a negative quantifier, and thus neither of them is asserted.

In fact, even in the most favorable cases (unembedded conjunctions, or
sequences of sentences in discourse), there is little reason to assume that
the addressee must necessarily grant F after he has heard the speaker assert
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it — after all, the speaker might well be wrong, and the addressee might
have every reason not to believe him.2 A proponent of Stalnaker’s theory
might argue that all that matters is that the addressee pretends to accept the
speaker’s claim; but even fictional acceptance leads to difficulties. Analyzed
in terms of common belief, a context (whether real or fictional) is intrinsically
symmetric between the beliefs of the speaker and those of the addressee. But
this very symmetry makes it difficult to explain why (3a) is Moore-paradoxical
while (3b) isn’t:

(3) a.#It is raining but I (still) don’t believe it.
b. It is raining but you (still) don’t believe it.

If the context set is really updated with the first conjunct before the
second one is processed, both sentences should be equally deviant: after the
first update, the context set entails that it is raining; this means in particular
that the speaker believes that it is raining, and that the addressee believes
it too. When we come to the second conjunct, we should obtain exactly the
same deviance in both cases. But in fact there is a clear difference between
(3a) and (3b): the former is Moore-paradoxical, the latter isn’t; it seems that in
(3b) the purported update process need not apply. A natural account can be
given if the context set is not updated with the content of the first conjunct
(but at most with the information that the speaker believes the first conjunct):
due to the first conjunct, (3a) can only be asserted if the speaker believes that
conjunct — but this is contradicted by the content of the second conjunct; no
such problem arises in (3b), since the speaker and the addressee need not
hold the same beliefs.3

2 This discussion hinges on the (Stalnakerian) assumption that the context set encodes what
the speech act participants take for granted. See Simons 2003 for refinements and extensions
of this analysis, and Thomason et al. 2006 for a rather different picture.

3 See Gillies 2001 for a recent analysis of Moore’s paradox within dynamic semantics (Gillies
(2001) does not discuss the asymmetry in (3), however). As the Editors have suggested,
within Stalnaker’s approach one could argue that (3b) is coherent because the present tense
refers to a time that precedes the point at which the context set is updated. This would
yield a meaning akin to: It is raining at time t and you don’t believe it at time t, with the
evaluation of you don’t believe it 〈at time t〉 taking place at a later time — say t + 300ms.
This would make it possible to preserve Stalnaker’s view of context update: at t + 300ms,
the addressee adds to his belief the fact that at t he didn’t believe that it was raining — and
no contradiction ensues. But this line of argument won’t work in (i):

(i) It is raining, and despite the fact that I have just told you so for the second time,
you still don’t believe it — you really are stubborn.
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In its semantic incarnation (Heim 1983), the dynamic approach makes
the update process part and parcel of the compositional semantics. Kart-
tunen 1974 had already provided rules of compositional context update for
each propositional connective and operator. However his analysis had two
drawbacks: it did not establish any relation between the truth-conditional
contribution of a connective and its context update behavior; and it did
not extend to quantifiers. Heim (1983) addressed both problems. First, she
took the meaning of any expression to be a Context Change Potential, and
she showed that the truth-conditional contribution of an operator could be
derived from it — which established a clear relation between the two notions.
Second, she developed an account that extended to quantifiers.

In Heim’s (1983) theory, the rule for and in (1) is preserved, but it is
interpreted in semantic rather than pragmatic terms — which avoids the tech-
nical and conceptual problems raised by Stalnaker’s analysis. It is possible
to recover the standard meaning of and from this rule: in general, we can
take a non-presuppositional sentence H to be true at a world w just in case
w ‘survives’ the update with H, or in other words if {w}[H] = {w}. For
H = F andG, we do get the result that H is true at w just in case F and G
are both true at w. But although truth conditions can be recovered from
Context Change Potentials, the converse is not true. As was noted early on,
there are a variety of dynamic connectives that are compatible with the truth
conditions of and — for instance the deviant conjunction and*, defined in (4)
from (Soames 1989):4

(4) C[(F and*G)] = C[G][F]

(4) predicts that John is incompetent and* he knows that he is should come
out as a presupposition failure, whereas John knows that he is incompetent
and* he is should be entirely acceptable; this is of course the opposite of

Here I have just told you so for the second time is naturally understood as making reference
to the first conjunct; and it is the addressee’s skepticism after this reiteration which is taken
as a sign of stubbornness. Interpreting (i) as It is raining at t, and despite the fact that I have
just told you so at t′ < t, you still don’t believe it at t would yield the wrong truth conditions.
By contrast, with the assumption that there is a 300ms interval between the assessment
of the conjuncts, we obtain the desired truth conditions if we understand (i) to mean: It is
raining at t, and despite the fact that at t I have just told you so for the second time, you still
don’t believe it at t + 300ms. However, if the addressee updates his beliefs with the first
conjunct before assessing the second one, a pragmatic contradiction should be obtained,
contrary to fact.

4 Heim (1992) attributes a similar observation to Mats Rooth, in a letter written in 1986.
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what we find in natural language. Heim’s account fails to be predictive in the
following sense: if we are given the syntax and classical truth-conditional
behavior of an operator, we cannot thereby predict how it will transmit
presuppositions — a point that was repeatedly made by Heim (1990b, 1992)
herself. To put it differently, any classical operator can be ‘dynamicized’
in a variety of ways; its dynamic extensions make the same predictions
with respect to non-presuppositional sentences, but they make conflicting
predictions about presupposition projection. But Heim’s analysis does not
provide a general recipe for choosing the ‘right’ dynamic connectives.

The problem isn’t academic. For although there is general agreement
about the dynamic entry of and, there are significant disagreements about
other operators. Thus Beaver 2001 provides a dynamic entry for or equivalent
to that in (5a), which predicts that (G orH) inherits the presuppositions of
G, as well as a conditional presupposition that if G does not hold, the presup-
position of H is satisfied. By contrast, Geurts 1999 defines a dynamic entry
that predicts that a disjunction inherits the presuppositions of each of its
component parts, as indicated in (5b) (see also Krahmer 1998 for discussion);
and there are other conceivable choices (throughout this discussion, we use
# to encode semantic failure).5

5 The rule in (i) is the mirror image of that in (5a):

(i) C[(G or3 H)] = C[(H or1 G)]

In case one takes (i) to be ‘perverse’ because, in some sense to be made clear, it executes the
update operations in the ‘wrong’ order, one should note that (ii) below is empirically quite
reasonable: the utterance of (G orH) only requires that either not G entails the presupposition
of H, or not H entails the presupposition of G (see Rothschild 2008c for a defense of such an
analysis).

(ii) C[(G or4 H)] 6= # iff (C[G] 6= # and C[(notG)][H] 6= #)
or (C[H] 6= # and C[(notH)][G] 6= #).
If 6= #, C[(G or4 H)] = C[G]∪ C[(notG)][H] if C[G] 6= # and C[(notG)][H] 6= #;
otherwise, C[(G or4 H)] = C[H]∪ C[(notH)][G].
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(5) a. C[(G or1 H)] = # iff C[G] = # or C[(notG)][H] = #.
If 6= #, C[(G or1 H)] = C[G]∪ C[(notG)][H].

b. C[(G or2 H)] = # iff C[G] = # or C[H] = #.
If 6= #, C[(G or2 H)] = C[G]∪ C[H].

Similarly, Heim 1983 predicted for quantified sentences of the form No
student has stopped smoking a universal presupposition that every student
used to smoke. By contrast, Beaver 1994 predicted an existential presupposi-
tion, namely that at least one student used to smoke. But there was nothing in
either theory to force one choice over the other. Finally, when it comes to
a connective like unless, dynamic theories make essentially no predictions.
More precisely, even if we tell these theories that unless F, G means the same
thing as if not F, G when F and G contain no presupposition triggers, they
are still unable to predict that unless F, G should display the same projective
behavior as if not F, G, as is suggested by (6).6

(6) a. If John didn’t leave, Mary will know that he is here.
b. Unless John left, Mary will know that he is here.
Presupposition of (6): If John didn’t leave, he is here.

In both cases, not F can serve to justify the presupposition of G. But from the
observation that if not F, G and unless F, G have the same classical semantics
(i.e. the same semantic behavior in non-presuppositional cases), it does
not follow within dynamic semantics that that they should also transmit
presuppositions in the same way.7

6 See Soames 1982 and Beaver 2001 for a discussion of similar data.
7 See Schlenker 2007 for a slightly more detailed discussion. To illustrate the formal problem,

it can be observed that the dynamic entries in (i) make the same predictions when F and G
are non-presuppositional, but that they disagree in the presuppositional case.

(i) a. C[unless1 F,G] = # iff C[F] = # or C[(not F)][G] = #.
If 6= #, C[unless F,G] = C − C[(not F)][(notG)].

b. C[unless2 F,G] = # iff C[F] = # or C[F][G] = #.
If 6= #,. . . (as in (a)).

c. C[unless3 F,G] = # iff C[F] = # or C[G] = #.
If 6= #,. . . (as in (a)).

d. C[unless4 F,G] = # iff C[G] = # or C[(notG)][F] = #.
If 6= #, C[unless F,G] = C − C[(notG)][F].
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To my knowledge, no general solution has been offered to this problem
in the published literature.8 For clarity, it might be useful to distinguish two
aspects of the difficulty.

First, is the dynamic analysis predictive? As usually stated, it is not, in the
sense that it fails to predict how operators whose presuppositional behavior
is not initially stipulated are to transmit presuppositions. It is sometimes
thought that independent evidence about the ‘right’ lexical entries can be
provided by other phenomena, in particular by anaphora resolution. And
indeed, it is generally accepted that anaphora and presupposition resolu-
tion share many properties — so that anaphoric data might well suffice to
decide which are the right dynamic lexical entries. But since an entire line of
analysis, the ‘E-type approach’ (e.g. Evans 1980, Ludlow 1994, Heim 1990a),
treats pronouns as concealed definite descriptions, which are themselves
presupposition triggers, it is not obvious that anaphoric data count as ‘in-
dependent’ evidence for an analysis of presuppositions; they might well be
presuppositional data in pronominal clothing.9 So it is currently an open
question whether non-presuppositional evidence can help choose among
various dynamic operators.

Second, is the dynamic analysis parsimonious? Even if one could find
independent evidence for positing certain dynamic operators rather than
others, it would still seem that a theory that needs as many axioms as there
are lexical entries is less desirable than one which provides a general recipe
by which the presuppositional behavior of any connective is predicted once
its classical semantics has been specified.

Our goal in the present paper is to offer a solution to (both aspects of) the
problem faced by Heim’s analysis. Specifically, we will address the following
challenge:

(7) Explanatory Challenge
Find an algorithm that predicts how any operator transmits presuppo-
sitions once its syntax and its classical semantics have been specified.

We solve the problem by developing a modular theory: the semantic module
is non-dynamic and fully classical; the pragmatic (or at least post-semantic)
module yields an algorithm that computes the value of all relevant local

8 See, however, LaCasse 2008 and Rothschild 2008c for very interesting attempts to constrain
dynamic semantics.

9 Other researchers — in particular van der Sandt 1993 and Geurts 1999 — unify the two
phenomena in a different way, by reducing presupposition projection to anaphora resolution.
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contexts on the basis of the classical semantics. In this way, once the
semantic behavior of an operator with respect to non-presuppositional (and
non-anaphoric) data is specified, its presuppositional behavior is thereby
predicted as well.

The pragmatic module incorporates an incremental component, which for
instance accounts for the asymmetric behavior of conjunction. We take this
incremental feature to stem from the fact that local contexts are preferably
computed ‘early’ in the processing of a sentence, without waiting for the
entire sentence to be processed. We will briefly suggest, however, that this is
just a preference, and that local contexts may, at some cost, be computed
‘late’, using semantic information about the entire sentence (this derives new
predictions, whose assessment is left for future research).

1.2 A New Analysis of Local Contexts

The explanatory problem outlined above has led some to throw the dynamic
baby out with its lexicalist bathwater (Schlenker 2007, 2008a; George 2008a,b;
Chemla 2008b). But this measure was premature: it is possible to reconstruct
a notion of ‘local context’ which is extremely close to that of dynamic seman-
tics, but is derived from a fully predictive algorithm. In order to achieve this
result, however, we depart from both sides of the dynamic tradition. Against
the pragmatic line, we deny that local contexts result from an update of the
beliefs of the speech act participants. Against the semantic line, we deny that
they are the product of intrinsically dynamic meanings.

In a nutshell, we take the local context of an expression E to be the
minimal domain of objects that the interpreter needs to consider when he
attempts to compute the meaning of a sentence. How can this notion of
‘minimal domain’ be motivated? The interpreter’s task is to determine which
worlds of the context set are compatible with the speaker’s claim; in other
words, he must compute a function from worlds in the context set to truth
values. To do so, he has access to the context set C, and to the meaning
of the words, which we take to be functions of various types. Now we will
assume (i) that it is easier to perform the steps of the computation when part
of the domain of a function can be disregarded, (ii) that the interpretation
is performed incrementally, and (iii) that before processing any expression,
the interpreter tries to simplify his task as much as possible given what he
already knows about the meaning of the sentence. From these assumptions,
it follows that the interpreter will try to decide in advance of interpreting any
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expression E what is the smallest domain that he needs to consider when
he assesses the meaning of E; this ‘smallest domain’ is our notion of a local
context.

Let us make the intuition clear with an example. We are in a context C,
and we have heard the speaker say: If John used to smoke, E. We set out to
assess the value of the consequent E of this conditional, which we analyze for
simplicity as a material implication. A possible strategy would be to check the
value of E in all possible worlds. But for the purposes of the conversation,
we are solely interested in those worlds that lie in C , because all other worlds
are excluded by the shared assumptions of the conversation partners. For
this reason, it won’t hurt to replace E with Ec

′
, where c′ denotes C and Ec

′

is interpreted as the conjunction of c′ and E; this makes it possible to only
consider the value of E in the C-worlds, without paying attention to the value
it may have outside of C. Since we will repeatedly use the notation Ec

′
, it is

worth introducing explicitly right away:

(8) Local Context Notation
If E is of a type that ‘ends in t’ (in particular, if E is of propositional or
predicative type), and if c′ is of the same type as E, Ec

′
is interpreted

as the (generalized) conjunction of c′ and E.10

In our example, when c′ denotes C, it will not affect the computation of
the meaning of the sentence relative to the context set; for this reason, we
will say that c′ is an ‘innocuous’ restriction on E. But we can find a smaller
restriction which is equally innocuous by only considering those C-worlds in
which John smoked, since all worlds in which John never smoked will make
the conditional true no matter what the value of E turns out to be. We take
the local context of E to be the smallest restriction of this sort that one can
make without jeopardizing the computation of the truth conditions of the
entire sentence. In the case at hand, the smallest such restriction is just the
set of those C-worlds in which John smoked. For if any such world w were
excluded from c′, we would take a risk by computing Ec

′
instead of E. To see

this, suppose that E is true at w. Then of course if John used to smoke, E is
true as well at w; but if John used to smoke, Ec

′
is false because c′ excludes

w — an undesirable result.

10 Importantly, this notation applies when E is of propositional type, but also when it is of
predicative type. In the latter case, we want the local context of E to be itself predicative,
which will prove crucial when we develop an account of presupposition projection in
quantified structures.
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We assume that the computation of the local context of an expression E
is preferably ‘done on the fly’, on the basis of the information that has been
heard before one processes E. This gives rise to an asymmetry: information
that comes before E is known when the local context is computed, but
information that comes after E isn’t, and the interpreter must therefore
ensure that no matter how the sentence ends the local context will indeed be
innocuous. Let us illustrate this incremental procedure by considering the
interpretation of (p and q) uttered in a context set C . To minimize clutter in
our notations, we adopt the following convention:

(9) If E is an expression, we write its semantic value as E.
If w a world and s an assignment function, Ew is the value of E at w,
and Ew,s is the value of E at w evaluated with respect to s.

We can now illustrate how the computation of meaning is performed for
a simple sentence (p and q), first without local contexts (in figure 1a), and
then with local contexts (in figure 1b). We take the context set to be C =
{w1,w2,w3}, and we write ∧ for (generalized) conjunction.

In figure 1a, the meaning of (p and q) relative to C is computed without
making use of local contexts: the interpreter accesses all of the function p,
all of the function q, and computes the meaning of (p and q) over the entire
domain of possible worlds, which he conjoins to the context set C to obtain
the final result on the right-hand side. In figure 1b, by contrast, the interpreter
makes use of the local context c′ of p, and of the local context c′′ of q. When
he sets out to interpret p, he knows that the context set is C , but he does not
know anything else about the rest of the sentence. So the local context of
the first conjunct p is just c′= {w1,w2,w3} = C. This allows him to restrict
attention to that part of the domain of p which is in c′ by uniformly assigning
the value 0 to all other worlds. Making use of this information, he computes
pc′ instead of p, knowing that this simplification won’t affect the semantic

result he is after. Before he starts interpreting q, he already has access to
p (or rather to pc′ ), and he can decide to disregard all worlds that make the
first conjunct false, since these will make the entire sentence false no matter
what the second conjunct turns out to be. By systematizing this reasoning,
we can determine that c′′ is just {w1,w2} (i.e. those C-worlds in which p is
true); making use of this information, the interpreter then computes qc′′ . The
final result on the right-hand side is exactly the same as in figure 1a; but in
figure 1b the interpreter has made optimal use of information available at
each step by uniformly assigning the value 0 to as many worlds as possible
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(10)  Computation of the meaning of (p and q) relative to C = {w1, w2, w3} 
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In (10)a, the meaning of (p and q) relative to C is computed without making use of local 

contexts: the interpreter accesses all of the function p, all of the function q, and computes the 

meaning of (p and q) over the entire domain of possible worlds, which he conjoins to the 

context set C to obtain the final result on the right-hand side. In (10)b, by contrast, the 

interpreter makes use of the local context c’ of p, and of the local context c” of q.  When he 
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some readers of the ‘Strong Kleene’ trivalent logic, but there are important conceptual, 
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obtained by computing the meaning 

of the sentence with or without  local 
contexts 

The worlds that are outside of c’ and c” can be disregarded: the functions c’p and c”q uniformly assign 0 to them. 

Figure 1 Computation of the meaning of (p and q) relative to C =
{w1,w2,w3}
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before interpreting the next expression (this procedure may remind some
readers of the ‘Strong Kleene’ or ‘supervaluationist’ trivalent logics, but there
are important conceptual, technical and empirical differences between these
frameworks and the present analysis; a brief comparison is offered in Section
3.4).

2 Reconstructing Local Contexts

2.1 Formal Preliminaries

Before we define local contexts and apply them to the analysis of presup-
position, let us introduce our formal framework. We work within a bivalent
semantics, and we assume that the presupposition d of an expression dd′

in a syntactic context a b must be entailed by its local context given the
global context set. Following the spirit of Stalnaker’s approach, we take this
requirement to be pragmatic in nature; as a result, presupposition failure
need not be encoded in the semantics itself. Thus we treat the semantics
as bivalent, and we interpret dd′ as the conjunction of d and d′; the fact
that d is underlined has no semantic import, but it is crucial to indicate to
the pragmatics that d must be entailed by its local context (so pipk will in
the end represent a proposition with a presupposition pi and an assertive
content pk; PiPk has the same interpretation, except that each element is
predicative rather than propositional).

In the rest of this discussion, we provide formal details as are needed
to offer a self-contained presentation of the theory and of a few examples;
systematic definitions and general results can be found in Appendix C. In
order to keep the discussion manageable, we assume in most of the discus-
sion a simplified formal syntax, summarized in (10), in which constituency
is encoded by parentheses: conjunctions and disjunctions have the form
(F andG) and (F orG), negations have the form (not F), and generalized
quantifiers and conditionals appear as (QF.G) and (if F.G) respectively.
Since the system is intensional, propositions are of type 〈s, t〉 and predicates
are of type 〈s, 〈e, t〉〉 (for brevity, we will speak of the type of an expression,
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but also of the set-theoretic object it corresponds to).

(10) Syntax
a. Generalized Quantifiers: Q ::= Qi
b. Predicates: P ::= Pi | PiPk (Type: 〈s, 〈e, t〉)
c. Propositions: p ::= pi | pipk (Type: 〈s, t〉)
d. Formulas: F ::= p | (not F) | (F and F) | (F or F) | (if F. F) |
(Qi P. P)

The ‘official’ object language is supplemented with the local context
notation introduced in (8).11 As mentioned, we view the local context of an
expression E in a sentence S relative to a context set C as the smallest set-
theoretic object (of the type determined by E) that one can restrict attention
to when assessing the contribution of E to the truth conditions of S relative to
C . To implement this idea, we must decide what ‘small’ and ‘restrict attention
to’ mean. Both notions can easily be defined if E is of a type that ‘ends in
t’, for instance 〈s, t〉, 〈s, 〈e, t〉〉, etc. In this case, ‘smaller’ will mean ‘entails’,
with a generalized notion of entailment; and one may ‘restrict attention to’
x when evaluating E if when c′ denotes x, c′ is an innocuous restriction
on E— in other words, E can be replaced with Ec

′
in S without risk that

this might affect the truth conditions of S relative to C. We will use the
symbol ≤ to denote generalized entailment both in the object language and
in the meta-language, and — as mentioned — we write ∧ in the meta-language
for generalized conjunction. It is essential that entailment and conjunction
be ‘generalized’ because the local context of a propositional element is
propositional, whereas the local context of a predicative expression is itself
predicative; and we want our definitions to apply to both cases.12 We remind
the reader of the relevant definitions in (11) and (12), but these are entirely
standard.

(11) Generalized Entailment
a. If x and x′ are two objects of a type τ that ‘ends in t’, and can

take at most n arguments, x ≤ x′ just in case whenever y1, . . . , yn
are objects of the appropriate type, if x(y1) . . . (yn) = 1, then
x′(y1) . . . (yn) = 1.

11 We will sometimes extend the object language with predicate conjunctions, which are written
as (P and P ′) and receive the natural interpretation.

12 We use notations from Boolean Algebra to emphasize the commonalities between the
predicate and the propositional case. In both domains, x ∧y represents the ‘greatest lower
bound’ of x and y , and x ≤ y indicates that x ∧ y = x (in fact, this could be taken as a
definition of ≤ in terms of ∧).
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b. If E and E′ are two expressions of a type τ that ‘ends in t’, w îs

(E ≤ E′) iff E′w,s ≤ Ew,s.

(12) Generalized Conjunction
a. If x and x′ are two objects of a type τ that ‘ends in t’, and can

take at most n arguments, of types τ1, . . . , τn respectively, then
x ∧ x′ = λy1τ1λynτnx(y1) . . . (yn) = x′(y1) . . . (yn) = 1.

b. If E and E′ are two expressions of a type τ that ‘ends in t’, ( EE′ )w,s =
(E′ and E)w,s = E′w,s ∧ Ew,s .

The rest of this section is devoted to a theory of incremental contexts
and incremental satisfaction, which is the closest counterpart in our system
of the local contexts of dynamic semantics (a symmetric version of these
notions is defined in Section 4).

2.2 Local Contexts and Local Satisfaction

2.2.1 Introduction

Let us start with an example. As we informally saw in figure 1, when we
evaluate in C a sentence that starts with (p and q . . . , we only need to be
concerned with the value that q has in those C-worlds that satisfy p— all
other words will be irrelevant, either because they lie outside of C , or because
they make p false, and thus make the entire conjunction false as well no
matter what the second conjunct is. In other words, we can be certain that
no matter what the end of the sentence — call it b′— turns out to be, the
restriction to the worlds in C ∧ p will be innocuous. Calling ‘good final’ a
string that turns the beginning of a sentence into a complete sentence,13 we
can thus assert (13):

(13) For every constituent d′, for every good final b′,
C îc′→C∧p

[
(p and d′c′ b′

]
⇐⇒

[
(p and d′b′

]
Here we employ standard notations from modal logic: C îc′→p F means

that under an assignment function in which c′ denotes p, every world w
in C makes F true (i.e. every world w in C guarantees that w îc′→p F ).
Importantly, d′ and b′ are meta-variables over strings, which explains why
(p and d′c′ b′ does not seem to contain the same number of left and of right

13 Good finals were called ‘sentence completions’ in Schlenker (2007). Thanks to Ed Stabler for
pointing out that the term ‘good final’ belongs to established terminology.
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parentheses: if the string denoted by b′ really is a good final, it will contain
enough right parentheses to turn the beginning of the sentence into a well-
formed formula.14 With these conventions, (13) means that if c′ denotes C∧p,
for any good final b′ the formula (p and d′c′ b′ is equivalent (relative to C) to
the formula (p and d′b′: the restriction to c′ is innocuous.

To show that C ∧ p is the local context of q, we need to show that it
is the smallest innocuous restriction that one can find; in other words, we
need to establish that C ∧ p is a subset of every innocuous restriction. So we
suppose, for contradiction, that the denotation of c′ excludes a C-world w
that satisfies p. If the sentence turns out to be (p and t), where t is true at
w, we will have the unfortunate result that w makes (p and t) true, but that
it makes (p and tc

′
) false. Thus c′ is not innocuous in the end. This shows

that C ∧ p is indeed the local context of the second conjunct.

2.2.2 Definitions

In the general case, local contexts are best defined in two steps. First, we
find the set of denotations that make c′ truth-conditionally innocuous; we
say in such cases (following the terminology of Schlenker (2007, 2008a))
that (the value of) c′ is ‘transparent’, or that it is a ‘transparent restriction’.
We then ask whether this set has a bottom element, i.e. one that entails
all others; if so, it is the incremental local context of the expression (the
case in which there is no bottom element is discussed in Appendix B). A
notion of presupposition satisfaction is then easily defined: a propositional
or predicative expression dd′ is acceptable just in case d is entailed by its
local context (which will itself be propositional or predicative, as the case may
be). In this part of our discussion, we stick to the intuition that restrictions
must be innocuous no matter what the end of the sentence turns out to be.
For this reason, our theory is incremental; analogous notions will be defined
in Section 4 for a symmetric version of the theory.

The first step, then, is to define the set of denotations that make c′

(incrementally) transparent (or ‘innocuous’). We write as tr(C,d,a b) the
set of transparent restrictions on the expression d in a sentence of the form
a d b uttered in a context set C (thus a b is the syntactic environment in

14 In the case at hand, (p and q . . . could only have been produced by an application of the rule
that creates conjunctions, and thus the entire sentence can only be (p and q).
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which the token d occurs).

(14) tr(C,d,a b) = {x : x is an object of the type specified by d and for
every constituent d′ of the same type as d, for every good final b′,
C îc′→x a dc

′
b′⇐⇒ ad′ b′}

It can be observed that the string b occurs on the left-hand side of the
identity (14), but not on the right-hand side. This is as it should be: because
the analysis is incremental, it can only access information which is available
before d, which makes the precise identity of the string b irrelevant.

Using the same notations, we can define the (incremental) local context of
d as the bottom element of tr(C,d,a b), if it has one:

(15) lc(C,d,a b) =

the bottom element15 of tr(C,d,a b), if it exists

# otherwise

To illustrate, the reasoning we developed at the beginning of this section
shows that lc(C, q, (p and )) = C ∧ p.

Restricting attention to the case in which all local contexts exist, we can
say that in a global context C the presupposition d of an expression dd′ in
a syntactic environment a b is (incrementally) satisfied in its local context
just in case it is entailed by it. We write this as Sat(C,dd′, a b):

(16) Sat(C,dd′, a b) just in case lc(C,dd′, a b) ≤ d

For a sentence S to be acceptable in C, it should be the case that for every
expression of the form dd′ that appears in S, d is entailed by its local context.
We write this as Sat(C, S):

(17) Sat(C, F) just in case for all expressions dd′, for all strings a,b, if
F = a dd′ b, then Sat(C,dd′, a b)

2.3 Examples

We can now apply these definitions to some traditional examples; in each
case, we derive on the basis of a classical semantics the results that Karttunen

15 As mentioned, by ‘bottom element’ of tr(C,d,a b), we mean an element e such that for all
e′ ∈ tr(C,d,a b), e ≤ e′. It is immediate that if a bottom element exists, it is unique: if e1
and e2 are both bottom elements, e1 ≤ e2 and e2 ≤ e1, so e1 = e2 (this is the case because e1
and e2 are set-theoretical objects rather than formulas).
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1974, Heim 1983, and Beaver 2001 had to stipulate in the update rules of
their operators.

Since we compute local contexts by quantifying over good finals, the
details of our formal syntax become rather important. If we seek to de-
termine, say, the incremental context of F in the formula (F andG), we
must — metaphorically — put ourselves in the position of someone who has
seen a left bracket, and asks himself what is the smallest restriction that will
be innocuous when he assesses the meaning of F , which is not known yet.
Now any formula that starts with (F . . . can be turned into a full sentence
in a variety of ways, for instance by adding andH), or for that matter by
adding orH), to obtain the formulas (F andH) and (F orH) respectively.
And all these possibilities must be taken into account to determine whether
a restriction c′ on F is or is not transparent (i.e. innocuous). We will further
assume that the language is extremely expressive, and that every proposition
or property can be denoted.

2.3.1 Propositional Examples

(i) (pp′ and q) and (pp′ or q) both presuppose p

To start with a particularly simple example, let us show that the incremental
context of p in any formula that starts with (p . . . is just the context set
C. It is clear that this restriction will be innocuous. Furthermore, if c′

denotes a set x that excludes a world w of C, it will fail to guarantee that
w îc′→x (c′ d′ and t)⇐⇒ (d′ and t) in case d′ is true inw and t is a tautology:
in this case, the left-hand side is false but the right-hand is true. Thus any
value for c′ which excludes any world of C will fail to be transparent; in
other words, any transparent restriction must include every world of C . This
means that C entails every transparent value for c′, and thus that C is the
incremental context of p.

(18) lc(C,p, ( and q)) = lc(C,p, ( or q)) = C

This result explains why both (19a) and (19b) are understood to presup-
pose that John is incompetent:

(19) a. John knows that he is incompetent, and he is depressed.
b. John knows that he is incompetent, or he is depressed.

Since p must be entailed by its local context, we obtain the desired result: C
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must entail p.

(20) Sat(C, (pp′ and q)) iff Sat(C, (pp′ or q)) iff C î p

(ii) (not pp′) presupposes p

The incremental context of pp′ in the formula (not pp′) is also the context
set C. First, a restriction to C is certainly innocuous. Second, by the same
reasoning as in (i), we can see that if c′ denotes a set x that excludes any
world w of C, we will fail to guarantee that w îc′→x (not d′c′ ) ⇐⇒ (not d′)
in case d′ is true in w: in this case, the left-hand side is true because d′c′ is
false, while the right-hand side is false. This shows again that the incremental
context of pp′ is C .

(21) lc(C,pp′, (not )) = C

This result explains why (22) presupposes that John is incompetent, which
motivates the standard conclusion that negations are ‘holes’ for presupposi-
tions.

(22) John doesn’t know that he is incompetent.

The incremental context of pp′ in (not pp′) is the global context C; and
since p must be entailed by its local context, we obtain the result that C must
entail p.

(23) Sat(C, (not pp′)) iff C î p

(iii) (p and qq′) presupposes (if p . q)

The incremental context of qq′ in the formula (p and qq′) is C ∧ p, as was
shown at the beginning of this section. In Heim’s notation, this derives the
result that C[p and qq′] = C[p][qq′]: the incremental context of qq′ is the
original context C , updated with p.

(24) lc(C, qq′, (p and qq′)) = C ∧ p

This result predicts that (25) should presuppose that if John is 64 years
old, he cannot be hired:

(25) John is 64 years old and he knows that he cannot be hired.
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The incremental context of qq′ is C ∧ p, which must entail q; but this is just
to say that C must guarantee that if p, q.

(26) Sat(C, (p and qq′)) iff C î (if p.q)

The same prediction was made by Stalnaker 1974, Karttunen 1974 and
Heim 1983, but it is not uncontroversial: van der Sandt 1993 and Geurts 1999
have argued that in many cases the conditional inference is too weak (this
has been dubbed the ‘Proviso Problem’). The same issue arises with respect
to the presuppositions predicted for conditionals and disjunctions; we come
back to this problem in Section 2.3.3.

(iv) (if p. qq′) presupposes p

The incremental context of F in the formula (if F.G) is C . For simplicity, we
follow Heim 1983 in treating conditionals as material implications. It then
follows that when c′ denotes C, it is innocuous in (if Fc

′
. G). Furthermore,

in case c′ denotes a set x that excludes some world w of C, if the sentence
turns out to be (if d′. b′) where d′ is true in w while b′ is false in w, we will
have that w îc′→x (if d′c′ . b′) (because c′ is false in w) but w 6îc′→x (if d′. b′)
(because d′ is true and b′ is false in w). Therefore every transparent value
for c′ must include all of C . C is thus the incremental context of F .

(27) lc(C,pp′, (if . q)) = C

The projection of presuppositions out of the antecedent of indicative
conditionals is a staple of presuppositional studies — so much so that it is
sometimes taken as a defining feature of presuppositions. For instance, (28)
clearly presupposes that John used to smoke.

(28) If John stopped smoking, he made a wise decision.

This result is immediately derived since we just showed that the context of
pp′ is C itself.

(29) Sat(C, (if pp′. q)) iff C î p
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(v) (if p . qq′) presupposes (if p . q)

As was illustrated in Section 1.2, the incremental context of qq′ in the formula
(if p.qq′) is also C ∧ p. To reiterate, it is immediate that this restriction is
innocuous. And if c′ denotes a set x that excludes some p-world w of C,
in case d′ is true in w we will have both that w îc′→x (if p.d′) (p is true,
and so is d′) while w 6îc′→x (if p. d′c′ ) (p is true, but d′c′ is false); hence
C 6îc′→x (if p. d′c′ ) ⇐⇒ (if p.d′). So the smallest innocuous restriction we
can find is C ∧ p.16

(30) lc(C, qq′, (if p. ) = C ∧ p

This result predicts that (31) should have a conditional presupposition
that if John is 64 years old, he cannot be hired:

(31) If John is 64 years old, he knows that he cannot be hired.

The reasoning is the same as for the conjunction in (iii): the sentence
(if p.qq′) is acceptable just in case q is entailed by its local context, namely
C ∧ p. So it must be that C ∧ p î q, and hence that C î (if p.q).

(32) Sat(C, (if p.qq′)) iff C î (if p.q)

(vi) (p or qq′) presupposes (if (not p) . q)

More interestingly, the incremental context of p in (p or qq′) is C∧(not p)—
which derives a result that Beaver 2001 argued for on the basis of presuppo-
sitional data. Within the present framework, the argument is quite direct: by
propositional logic, (p or d′) is always equivalent to (p or ((not p)and d′)),
hence C îc′→C∧(not p) (p or d′c′ )⇐⇒ (p or d′); this establishes that C∧(not p)
is a transparent value for c′. On the other hand, if c′ denotes a set x that
excludes a (not p)-world w of C, in case d′ is true in w we will have that

16 We note for future reference that the same reasoning extends to (if p. (not q)): C ∧ p is
clearly a transparent restriction for q, and furthermore it entails all transparent restrictions
for q (the argument is the same as for the preceding case, reversing the value that we
consider for d′):

(i) lc(C, q, if p. (not )) = C ∧ p

(This remark will be used in Appendix, in C.24(c).
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w îc′→x (p or d′) but w 6îc′→x (p or d′c′ ), and thus C 6îc′→x (p or d′) ⇐⇒
(p or d′c′ ); this shows that any transparent value for c′ must include all of
C ∧ (not p), which is thus the local context we were looking for.

(33) lc(C, qq′, (p or )) = C ∧ (not p)

This result predicts that (34) should have a conditional presupposition
that if John is not less than 64 years old, he cannot be hired.

(34) John is less than 64 years old, or he knows that he cannot be hired.

The result follows because in the sentence (p or qq′) the presupposition q of
the second disjunct must be entailed by its local context, namely C ∧ (not p).
So we must have that C ∧ (not p) î q, and hence that C î (if (not p). q).

2.3.2 Quantificational Examples

In Stalnaker’s pragmatic approach, it was difficult to see how a local context
could be of predicative type, because predicate denotations are not the
kind of things that can be believed. By contrast, our definition of local
contexts straightforwardly applies to the predicative case, and derives Heim’s
predictions in almost all cases.

(vii) (Every P . QQ′) presupposes (Every P . Q)

Let us first compute the incremental context of the nuclear scope Q in the
quantified statement (Every P.Q). For c′ to be conjoinable with Q in the
formula (Every P. Qc

′
), it must have the type of a predicate (= 〈s, 〈e, t〉). It

turns out that the ‘smallest’ transparent value of c′ (i.e. the one that entails all
other transparent values) is just the property P restricted to the context set,
which we write as PC and define as PC = λwsλxeC(w)=1and P(w)(x)=1.
To see that PC is indeed the local context of QQ′, we argue in two steps.

First, it is clear that such a restriction is transparent, i.e. truth-conditionally
innocuous: because natural language quantifiers are conservative, within C,
(Every P. D′c′ ) is equivalent to (Every P.D′) whenever c′ denotes PC .

Second, if c′ denotes a property x and is transparent in (Every P. D′c′ ),
then x is entailed by PC . For suppose, for contradiction, that this is not the
case. Then there is some world w of C and some individual d in the domain
for which PC (w)(d) = 1 but x(w)(d) = 0. Taking D′ = P , we will have the
result that w îc′→x Every P.D′, but w 6îc′→x (Every P. D′c′ ) (since d makes P
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true, but it makes D′c′ false). Thus C 6îc′→x (Every P. D′c′ )⇐⇒ (Every P.D′),
which shows that c′ is not transparent after all.

(35) lc(C,Q, (Every P. )) = PC

This result predicts that the sentences in (36a) and (36b) have a universal
presupposition that every student has a computer, and that those in (36c)
and (36d) presuppose that every student used to smoke:

(36) a. Every student takes good care of his computer.
b. Does every student take good care of his computer?
c. Every student has stopped smoking.
d. Has every student stopped smoking?

The result follows because in the sentence (Every P.QQ′) the presupposition
Q of the nuclear scope must be entailed by its local context, namely PC . But
this is just to say that for every world w in C, for every individual x in the
domain of w, if P(w)(x) = 1, Q(w)(x) = 1. In other words, the context set
C must guarantee that every P-individual is a Q-individual.

(37) Sat(C, (Every P.QQ′)) iff C î (Every P.Q)

(viii) (No P . QQ′) presupposes (Every P . Q)

More surprisingly, the same result extends if we consider the formula
(No P. Qc

′
): the local context of Q is just PC . This is an important observation

because it guarantees that the projective behavior of (No P.QQ′) is identical
to that of (Every P.QQ′): both sentences presuppose that every P -individual
is a Q-individual.17 Let us see how the result is derived.

By Conservativity, if c′ denotes PC this restriction will be truth-conditionally
innocuous.

Now suppose, for contradiction, that c′ denotes a property x which
is not entailed by PC , and thus that for some world w and individual d,
PC (w)(d) = 1 but x(w)(d) = 0. Pick a predicate D′ which is true of d and

nothing else in w (i.e. D′(w) = {d}). In such a case, w îc′→x (No P. D′c′ )
because the only member of D′(w), namely d, does not belong to x(w), so

17 This result is also significant because it derives stronger presuppositions than a super-
valuationist (or Strong Kleene) analysis would. We come back to this point in Section
3.4.
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that the nuclear scope D′c′ has an empty extension in w. On the other hand,
w 6îc′→x (No P.D′), because d belongs both to PC (w) and to D′(w). Thus
C 6îc′→x (No P. D′c′ ) ⇐⇒ (No P.D′), which shows that c′ is not transparent
after all.

(38) lc(C,Q, (No P. )) = PC

This analysis predicts that the sentences in (39) should trigger universal
presuppositions:

(39) a. None of these ten students takes good care of his computer.
⇒ Each of these ten students has a computer.

b. None of these ten students has stopped smoking.
⇒ Each of these ten students used to smoke.

This result follows from the present theory because the local context of QQ′

in (No P . QQ′) is PC , which must thus entail Q. But this is exactly the same
condition we had in (vii) for the sentence (Every P . QQ′), and thus in the
present case as well it should be that relative to C every P -individual satisfies
Q.

(40) Sat(C, (No P . QQ′)) iff C î (Every P . Q)

The inferences that are triggered in French by equivalents of (Every P.QQ′)
and (No P.QQ′) were tested by Chemla (2007, 2009) with experimental
means: in both cases, almost 90% of his subjects derived a universal in-
ference that each P-individual is a Q-individual (in Chemla’s experiment, the
demonstrative these ten students in (39) was designed to make it pragmati-
cally unlikely that the speaker had an additional implicit restriction in mind; a
similar structure was used with each). In the case of (Every P.QQ′), Chemla’s
result could be explained away by assuming that the presupposition of the
main predicate is also part of the assertive component, which would make the
universal inference unsurprising on most theories. But this strategy doesn’t
explain why a universal inference that every P-individual is a Q-individual
is also obtained in (No P.QQ′); Chemla’s inference appears to be due to
presupposition projection rather than to an entailment.18

18 See Appendix E for discussion of universal inferences arising with non-conservative quanti-
fiers.
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2.3.3 The Proviso Problem

As mentioned, for sentences of the form (p and qq′) or (if p.qq′) we predict
a conditional presupposition that (if p.q). But as was argued in detail in
van der Sandt 1993 and Geurts 1996, 1999, these predictions are often too
weak, a difficulty that Geurts called the ‘Proviso Problem’ (see also Gazdar
1979, Karttunen & Peters 1979). The greatest difficulty, for the present theory
as well as for dynamic semantics, is to explain the contrast between (41a),
which displays the expected presupposition, and (41b), which typically yields
a stronger (unconditional) presupposition.

(41) a. Peter knows that if the problem was easy / difficult, someone
solved it. (Geurts 1999)
6⇒ Someone solved the problem.

b. If the problem was easy / difficult, then it isn’t John who solved it.
(Geurts 1999)
⇒ Someone solved the problem.

There is now a growing body of work that attempts to explain on pragmatic
grounds why conditional presuppositions are sometimes strengthened (see
for instance Beaver 2001, Heim 2006, Pérez Carballo 2007 and van Rooij
2007). These solutions could be adapted to the present framework, but it is
fair to say that the contrast in (41) has not been fully explained yet (Singh
(2007b) does explain it, but his account is in part syntactic).

The DRT approach to presuppositions is designed to address this prob-
lem. But it raises difficulties of its own (see Beaver 2001 for discussion).
Without going into too much detail, let us mention two. First, the DRT ap-
proach fails to explain the universal inferences found in (No P.QQ′): the only
readings it predicts are that no P-individual that satisfies Q also satisfies Q′,
or that no P individual satisfies Q and Q′— none of which yields the desired
inference.19 Second, the DRT approach can never derive genuine conditional
inferences for (P andQQ′) or (if P.QQ′); but conditional presuppositions

19 On the other hand, DRT makes welcome predictions when it comes to the restrictors
of generalized quantifiers, which generally fail to give rise to universal presuppositions,
contrary to what Heim 1983 or the present approach predict (e.g. No student who knows
that he is incompetent applied does not give rise to an inference that every student is
incompetent). Experimental results on presupposition projection out of restrictors are
discussed in Chemla 2008a.
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are clearly obtained in some cases, as is illustrated in (42).

(42) If you accept this job, will you let your parents know that you work
for a {priest | thug}?
⇒ If you accept this job, you will work for a {priest | thug}.

The debate should be considered open at this point; for better or worse,
our approach sides with dynamic semantics on the issue of conditional
presuppositions.

2.4 General Results

We have shown that in some salient examples our analysis derives the same
results as Heim 1983. But what about the general case?

In the propositional case, we obtain full equivalence with the system
outlined in Heim 1983, enriched with the asymmetric dynamic disjunction of
Beaver 2001. Specifically, it can be shown that for any propositional formula
F and for any context set C, the local contexts as we have defined them
always exist. Furthermore, if we write as C[F] the Heimian update of C with
F , C[F] 6= # just in case for each presupposition trigger of the form dd′ that
occurs in F , d is entailed by its local context as reconstructed here (using
our earlier notation, we write this as Sat(C, F)). This result is summarized in
(43).

(43) Let C ⊆ W be a context set and let F be a propositional formula. Then:
a. For all expressions a,b,dd′, if F = a dd′ b, then lc(C,dd′, a b) ≠

#.
b. Furthermore, Sat(C, F) iff C[F] 6= #.

In the quantificational case, things are more complicated. In a nutshell,
when all the relevant local contexts exist, (44) also holds, but only when two
technical conditions are met:

Non-Triviality Quantificational clauses should not be ‘trivial’ (i.e. replaceable
with a tautology or a contradiction).

Constancy The domain of individuals should be finite, and in addition re-
strictors should hold true of a constant number of individuals through-
out the context set.20

20 While Non-Triviality is quite natural (why would one use a quantificational clause if it is
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In case local contexts fail to exist, a modified version of the present the-
ory guarantees full equivalence with Heim’s result when Non-Triviality and
Constancy are satisfied.

It is worth saying how these results are proven. The key observation is
that whenever local contexts exist, the present theory is equivalent to the
‘Tranparency theory’ (Schlenker 2007, 2008b), an analysis that was initially
presented as anti-dynamic. It was proven in earlier work (Schlenker 2007)
that under the conditions of Non-Triviality and Constancy, the Transparency
theory is itself equivalent to Heim’s dynamic semantics. Indirectly, then, we
obtain an equivalence between the present account and Heim 1983.

The relationship between the present analysis, the Transparency the-
ory and dynamic semantics is discussed in Appendix A. In Appendix B, we
consider the case in which local contexts fail to exist, and show that an ex-
tension of the present analysis yields full equivalence with the Transparency
theory — which indirectly proves an equivalence with dynamic semantics.
Finally, the main definitions and formal results are stated in Appendix C.

3 Extensions

3.1 Enriching the Fragment

Up to this point, we have concentrated on a very simple fragment, which
allowed us to obtain general results of equivalence with standard dynamic
semantics. But our definition of local contexts can in principle be applied to
much richer languages — possibly with small adjustments in the definitions.
All we need in order to compute the local context of an expression E (whose
type ‘ends in t’) in a sentence a E b is (i) a well-defined syntax and semantics
for S, and (ii) a notion of equivalence (relative to the context set) between
sentences of the form a d′ b′ and a d′c′ b′. We will now briefly consider
extensions of our basic language with questions, belief reports, as well as
variable-binding operators (though a technical discussion of the latter is left
for Appendix D).

trivial?), I cannot think of any good justification for Constancy. Without the latter, we
obtain presuppositions that are sometimes weaker than those predicted by Heim 1983 (see
Appendix A, fn. 31, for an example).
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3.1.1 Adding Questions

For concreteness and technical simplicity, we adopt the structured approach
to questions advocated in Krifka 2001.21 In this framework, yes and no denote
functions that return the positive or negative version of their propositional
argument, as indicated in (44a). And the meaning of a yes-no question (?p) at
a world w is simply a function that takes yes or no as an input, and returns
the value of p or of not p, as shown in (44b). Finally, the meaning of an
answer A to a question Q is just the value of Q taking as argument the value
of A, as illustrated in (44c) and (44d) (in our type-theoretic notation, we write
st to abbreviate 〈s, t〉):

(44) a. yesw = λpst p; now = λpst (not p)
b. (?p)w = λf〈st,st〉 [f (λw′ pw′)](w),

where f ranges over {λpst p,λpst (not p)}
c. Meaning of the answer ‘yes’ at w: (?p)w(yesw) = pw

d. Meaning of the answer ‘no’ at w: (?p)w(now) = (not P)w

The effect of this semantics is that the meaning of a question (?p)
at a world w can be assimilated to the ordered pair of its answers at w:
〈pw , (not p)w〉.

Now a natural criterion of equivalence between two questions Q and Q′

relative to a context set C is that at each world of C , Q and Q′ have the same
denotation. Using the familiar syntactic reasoning (whereby the only good
final is the right parenthesis), we can now take the local context of pp′ in the
question (?pp′) to be the strongest proposition x that satisfies (45):

(45) for every clause d′, C îc′→x (?d′) = (? d′c′ )

In other words, for every clause d′, every world w in C should guaran-
tee that λf〈st,st〉 [f (λw′ d′w

′
)](w) = λf〈st,st〉 [f (λw′ ( d′

c′ )w′,c→x)](w). These
functions are identical just in case they output the same value for each of
their arguments, of which there are only two: yes and no (if we view the

21 Krifka’s (2001) approach is easy to integrate to our analysis because it implies that if two
questions Q and Q′ are equivalent, then their possible answers A1 and A′1, A2 and A′2, etc.
are equivalent as well — which yields an immediate reduction to the assertive case. In other
approaches to questions, the equivalence between Q and Q′ would only guarantee that the
set of {A1, A2, . . . } is identical to {A′1, A′2, . . . } (where these may be sets of true or possible
answers, depending on the approach). The integration of various theories of questions into
the present framework is left for future research.
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meaning of a Krifka-question as a pair of its answers, two questions are
identical just in case they are identical coordinate by coordinate). Thus their
positive answers should be equivalent, and their negative answers should be
as well:

(46) for every clause d′, for every world w in C ,

a. (?d′)w(yes) = (? d′c′ )w,c′→x(yes), i.e. d′w = d′c′ w,c′→x

b. (?d′)w(no) = (? d′c′ )w,c′→x(no), i.e. (not d′)w = (not d′c′ )w,c′→x

It is immediate that (46b) reduces to (46a), which is satisfied if c′ denotes
C, but not if it excludes any world of C (as before, this result builds on the
assumption that every proposition can be expressed in the language). So we
derive the result that the local context of pp′ in ?pp′ is the global context C .
As a result, the question ?pp′ is acceptable in C just in case C entails p, as
desired.

Wh-questions can be treated in the same way. Let us briefly sketch the
argument. In Krifka’s framework, (who P) (e.g. Who smoked ?) receives the
analysis in (47) (for simplicity, P is a simple predicate, and we abstract away
from the nominal restriction of the wh-word — in this case, the fact that who
only ranges over human beings):

(47) a. Question: who P?
(who P)w = λie Pw(i)

b. Term Answer: John
(who P)w(Johnw) = Pw(j)

In general, we can compute the value of the local context of PP ′ in (who PP ′)
as the strongest property x (of type 〈s, 〈e, t〉〉) which satisfies the condition
in (48a), which reduces to (48b) (we take the domain of individuals to be
constant across worlds):

(48) a. for every clause d′, for every world w in C ,
(who d′)w = (who d′c′ )w,c′→x

b. for every clause d′, for every world w in C, for every individual i,
d′w(i) = ( d′c′ )w,c′→x(i)(i).

It is immediate that the condition is satisfied if the denotation x of c′ is the
property λw λx w ∈ C (i.e. the property which in C is true of all individuals,
and which outside of C is false of all individuals). But if for any world w of
C and any individual i, x(w)(i) 6= 1, the condition will be violated in case
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d′(w)(i) = 1, since in this case d′c′ (w)(i) = 0. This analysis predicts that
wh-questions should yield universal presuppositions, as in (49):

(49) Among your 10 students, who is aware of being incompetent?
⇒ each of your 10 students is incompetent

While universal projection in wh-questions is assumed by some researchers
(e.g. Abrusan (2008)), experimental data do not yet decide the issue.22

3.1.2 Adding Belief Reports

Heim (1992) predicts that John believes pp′ presupposes that John believes
p.23 Her analysis is based on a modal treatment of believe, in which John

22 In recent work, Chemla (2008a) tested French sentences similar to (i), with different presup-
position triggers (change of state verbs, possessive descriptions, know, be unaware. . . ).

(i) Parmi ces 20 étudiants, qui prend soin de son ordinateur?
Among these 20 students, who takes good-care of his computer ?

Interestingly, Chemla (2008a) obtained significantly different results depending on the
methodology he adopted.

In a gradient inferential task, in which subjects were asked to estimate the degree (0%–
100%) to which they made certain inferences, Chemla (2008a) obtained high endorsement
rates for universal inferences. Specifically, he got an average of 76.7% of endorsement
of the universal inference; for comparison, universal inferences under no student were
obtained with an average of 86.6%. This suggests that wh-questions do trigger universal-like
presuppositions.

In a coherence task, in which the negation of the purported presupposition was explicitly
asserted, and the resulting discourse was assessed for coherence, universal inferences were
obtained much less strongly with embedding under who than under no student: the average
coherence in the no student case was of 51.9%, and of only 16.1% in the who case — which
suggests wh-questions do not trigger universal presuppositions. Needless to say, the problem
is currently open. (Thanks to Emmanuel Chemla for discussion of these results).

23 This prediction is controversial, since conditional presuppositions that are not explicitly
justified in the preceding discourse are often strengthened to unconditional ones, as shown
in (i):

(i) a. John believed I had started proof-reading at 5pm (modified from Geurts 1999)
⇒ I had not been proof-reading before 5pm.

b. John believed that I had not been proof-reading before 5pm, but he thought
that I had finally started proof-reading at 5pm.
6⇒ I had not been proof-reading before 5pm.

Proponents of DRT claim that (ia) shows that John thinks that pp′ presupposes p rather
than John believes that p. Proponents of dynamic semantics, with whom our theory sides,
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believes F is true at world w just in case F is true in all worlds compatible
with what John believes in w (we call the set of these worlds DoxJ(w)).
Since this modal analysis is quantificational in nature, we might expect our
theory to predict the same result as for universally quantified sentences such
as (Every P.QQ′)— hence a presupposition that every world in DoxJ(w)
satisfies the presupposition p of the embedded clause, which in turn derives
Heim’s prediction. This is indeed the case, but some care is needed in the
implementation because believe is an intensional construction.

In our treatment of (Every P.QQ′),QQ′ had the intensional type 〈s, 〈e, t〉〉.
When we computed the value of c′ in (Every P. QQ′c′ ), c′ also had the type
〈s, 〈e, t〉〉, which was crucial to allow c′ to take different values at different
worlds of the context set. We must of course preserve this ability in the case
of belief reports: a person’s beliefs depend on the world of evaluation, and
the value of c′ should too. But this possibility will be lost if we posit for belief
reports the intensional semantics in (50) (we henceforth adopt the simplified
syntax (believeJ F) for John believes that F ; st abbreviates the type 〈s, t〉):

(50) believeJ is of type 〈s, 〈st, t〉〉 and F is of type 〈s, t〉
(believeJ F)w = 1 iff believeJ

w(λw′Fw
′
) iff for every world w′ ∈

DoxJ(w), Fw
′ = 1

The problem we face is that the value of the initial world parameter w is
lost when we evaluate the embedded clause F . As a result, the value of the
contextual restriction in Fc

′
cannot depend on w, contrary to what is needed.

This problem is by no means special to the present case: when one
considers a language with indexicals, the semantics in (50) turns out to
be inadequate. This is because indexicals depend rigidly on the context
of utterance rather than on the world of evaluation, a fact that cannot be
captured in this semantics. To solve this problem, Kaplan 1989 introduced
the device of double indexing, in which every expression is evaluated with
respect to a context of utterance in addition to a world parameter. Once this
modification is adopted, our problem can be solved — though only if believe
is not embedded under further modal operators.

Let us now posit the two-dimensional analysis of attitude reports given
in (51) (for simplicity, we take the context of utterance w∗ to be a world;
each earlier type τ is now replaced with 〈s, τ〉 to take into account of this

suggest that independent mechanisms are responsible for the strengthening (see van Rooij
2007 for a recent discussion of pragmatic mechanisms that might strengthen conditional
presuppositions to unconditional ones). I believe that the question is currently open.
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dependency on the context of utterance).

(51) believeJ is of type 〈s, 〈s, 〈st, t〉〉〉 and F is of type 〈s, 〈s, t〉〉
(believeJ F)

w∗,w = 1
iff believeJ

w∗,w(λw′ Fw
∗,w′)

iff for every world w′ ⊂ DoxJ(w), Fw
∗,w′ = 1

As in Kaplan’s system, when we evaluate the truth of a statement with
respect to a context of utterance w∗, we take the initial world of evaluation
to be w∗ as well. Taking into account the syntactic fact that a good final for
the string (believeJ pp′ can only be the right parenthesis ), we can define
the local context of F in (believeJ pp′) to be the strongest element x of type
〈s, 〈s, t〉〉 which satisfies the condition in (52):

(52) for every clause d′ of type 〈s, 〈s, t〉〉, for every w∗ in C ,
(believeJ d

′)w∗,w∗,c′→x = (believeJ d’c′ )w∗,w∗,c′→x,

i.e. [for every world w ∈ DoxJ(w∗), dw
∗,w = 1]

iff [for every world w ∈ DoxJ(w∗), ( d′c′ )w∗,w∗ = 1].

We can now argue that the desired value is x = λw∗ λw (w∗ ∈ C and w ∈
DoxJ(w∗)). First, it is clear that this restriction will never affect the truth
conditions, because for every w∗ in C , the quantification in (52) is restricted
to worlds in DoxJ(w∗). Second, the restriction x will lead us astray if for
some w∗ in C and some w in DoxJ(w∗), x(w∗)(w). For suppose that d′ is
a tautology; it will then be true that (believeJ d’)w∗,w∗,c′→x = 1 but not that

(believeJ d′c′ )w∗,w∗,c′→x = 1, because w is in DoxJ(w∗) but d′c′ w∗,w∗,c′→x = 0.
The conclusion, then, is that a sentence of the form believeJ pp′ presup-

poses that every world compatible with what the agent believes should satisfy
p. This result follows because the local context x of the embedded clause
should entail p; thus it must be that for all worlds w∗, w, if x(w∗)(w) = 1,
pw

∗,w = 1, with x = λw∗ λw (w∗ ∈ C andw ∈ DoxJ(w∗)). In other words,
it should be the case that for every world w∗ in C, for every world w in
DoxJ(w∗), pw

∗,w = 1. This is the standard result obtained in Heim’s frame-
work: John believes that it stopped raining is taken to presuppose that John
believes that it rained (Heim 1992).

3.1.3 Adding Variable-binding Operators

The language under consideration can also be enriched by adding individual,
time or world variables to it. In essence, the analysis can be extended by
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taking local contexts to be functions from assignment functions to objects of
types that ‘end in t’. The technical implementation is sketched in Appendix
D. (Within a language with explicit world variables, this extension makes it
possible to treat modal operators — including ones that are embedded under
other modal operators — without recourse to the indexical analysis described
in the previous paragraph.)

3.2 Dynamic Implementation

Although our analysis did reconstruct a notion of local context, it also
departed from dynamic semantics in . . . not being truly dynamic at all!24

Specifically, in our system local contexts are derivative from a classical se-
mantics, together with a specification of the syntax of the language under
consideration. Still, one could use our framework to constrain a more con-
servative version of dynamic semantics, one in which all expressions are
intrinsically dynamic.25 We can thus require that for any unary or binary
connective ∗, lexical rules specify that the presupposition of FF ′ in C[∗FF ′]
really be checked with respect to the incremental context of FF ′; and in case
no presupposition failure occurs, the update of C with (∗FF ′) is simply the
subset of worlds of C that satisfy (∗F ′) (given that in such a case F is entailed
by the incremental context, this is the same thing as satisfying (∗FF ′)).

(53) C[(∗FF ′)] 6= # iff lc(C, FF ′,∗ ) ≤ F
If 6= #, C[(∗FF ′)] = {w ∈ C : w î (∗F ′)

The same reasoning can be applied to binary connectives:

(54) C[(FF ′ ∗GG′)] = # iff
a. it is not the case that lc(C, FF ′, ( ∗GG′)) ≤ F or
b. (lc(C, FF ′, ( ∗GG′)) ≤ F and it is not the case that

lc(C,GG′, (FF ′ ∗ )) ≤ G.
If ≠ #, C[(FF ′ ∗GG′)] = {w ∈ C : w î (F ′ ∗G′)}.

For instance, for ∗ = and , C[(FF ′ andGG′)] = # iff the local context of FF ′,
namely C itself, fails to entail F, or if the local context of GG′, namely C ∧FF′,

24 While the theory of Heim 1983 was ‘entirely’ dynamic, Karttunen 1974 combined a static
semantics with fully autonomous rules of context update. Heim improved on such a system
by showing how the static semantics could be derived from appropriate rules of update. We
have attempted to do the converse, i.e. to show that context update can be made to follow
from a static semantics.

25 See LaCasse 2008 and Rothschild 2008b,c for very different solutions.
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fails to entail G. If C[(FF ′ andGG′)] 6= #, it is equal to the set of worlds in
C which satisfy F ′ and G′. This is exactly the rule that was posited in Heim
1983. But the result is more general: in the propositional case, our templates
derive the rules for connectives found in Heim 1983 (augmented with the
asymmetric dynamic disjunction of Beaver 2001). The template in (54) can
easily be extended to binary connectives that have a different syntax, such as
(if F.G) or (QF.G); it is noteworthy that the same template applies to both
cases because, in our highly simplified fragment, they share the same syntax:

(55) C[(∗FF ′.GG′)] = # iff
a. it is not the case that lc(C, FF ′, (∗ .GG′)) ≤ F or
b. lc(C, FF ′, (∗ .GG′)) ≤ F and it is not the case that

lc(C,GG′, (FF ′ ∗ )) ≤ G.
If 6= #, C[(∗FF ′.GG′)] = {w ∈ C : w î (F ′ ∗G′)}.

(For reasons that we discuss below, the template for quantifiers derives
something close, but not identical, to Heim’s treatment of quantifiers; see in
particular sections C.22–C.23 of the appendix.)

Although our algorithm can be embedded in a standard dynamic frame-
work to constrain the list of possible dynamic entries, given the present data
we take this move to be unnecessary and thus undesirable: the algorithm
already delivers what we want without a dynamic semantics, and by Occam’s
razor the latter should presumably be dispensed with. The situation will of
course change if independent arguments (e.g. from anaphora resolution) can
be given for the dynamic framework.

3.3 Local Triviality

Some recent accounts of presupposition projection do without any notion of
local context (Schlenker 2007, 2008a, George 2008a,b, Chemla 2008b). The
present account, which is in this respect more conservative, has the advantage
of allowing for a general theory of triviality which follows Stalnaker’s (1978)
initial insights: an expression E is locally trivial if it is entailed by its local
context; and it is locally contradictory if its negation is entailed by its local
context (see Singh 2007a for a recent discussion). This has some welcome
empirical consequences.

The following constructions are deviant, most probably because he is sick
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is in some sense redundant:

(56) a.#John has cancer and [he is sick or desperate]
b. John has cancer and he is desperate.
c. #If John has cancer, he is sick or desperate.
d. If John has cancer, he is desperate.

The analysis is straightforward: in (56a) and (56c) he is sick is entailed by
its incremental context, whereas the situation is different in (56b) and (56d).
Similarly, the contrast in (57) can be accounted for in terms of ‘incremental
triviality’:

(57) a. John is in Paris, and he is staying near the Louvre.
b.#John is staying near the Louvre, and he is in Paris.

What about violations of the constraints against expressions that contra-
dict their local context? Cases in which one disjunct entails the other are
known to be deviant (Hurford 1974), and they have recently been the object
of detailed studies (Singh 2008; Chierchia et al. 2008):26

(58) a.#John is staying near the Louvre, or he is in Paris.
b.#John is in Paris, or he is staying near the Louvre.
c. John is staying near the Louvre, or at least he is in Paris.
d.#John is at least in Paris, or he is staying near the Louvre.

As was shown in (33), the incremental context of q in (p or q) uttered in
a context set C is C ∧ (not p). It follows that (58b) should be incrementally
deviant, since for p = John is in Paris it is clear that C ∧ (not p) entails the
negation of John is staying near the Louvre. On the other hand, (58a) should
not be deviant, because the second disjunct is not locally contradictory
(John could fail to be staying near the Louvre while still being in Paris). It is
noteworthy that when at least is added, as in (58c) and (58d), the data are
as expected. We leave this problem for future research27 (but see Chierchia
et al. 2008 for an in-depth discussion of related issues).

26 Special thanks to Benjamin Spector for helpful conversations on this topic and on this
specific hypothesis.

27 Anticipating Section 4, we could posit that (58a) is deviant because the first disjunct is
contradictory relative to its symmetric local context, which takes into account the entire
sentence (it turns out that the symmetric context of the first disjunct in (58a) is identical
to the incremental context of the second disjunct in (58a), hence the result). But if the
symmetric context is what matters, (57a) should be as deviant as (57b), contrary to fact.
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3.4 Alternative Accounts

The present theory is by no means alone in seeking a solution to the explana-
tory problem of dynamic semantics. First, there are alternative attempts to
constrain standard dynamic semantics, either by imposing a template on
possible lexical entries (LaCasse 2008; Rothschild 2008b,c) or by deriving
parts of the framework from the logic of common belief (Unger & van Eijck
2007). Second, there are entirely different, non-dynamic accounts that seek to
connect presuppositions and implicatures, albeit within a new framework for
both (Chemla 2007, 2008b). Third, George (2008a,b) and Fox (2008)have re-
cently revived and considerably improved a non-dynamic trivalent approach
that was explored by Peters (1979) and Beaver & Krahmer (2001); they are, in
essence, incremental versions of supervaluations or Strong Kleene systems.
A general comparison of the present account with these new approaches is
left for future research. But since the trivalent approach has some properties
in common with the present account, a brief discussion is called for.

For simplicity, we restrict attention to the incremental trivalent account
discussed in Fox (2008), based on supervaluations (in the case we consider,
similar results are obtained in simple extensions of the Strong Kleene logic,
as discussed in George 2008a). Semantic failure is treated as an uncertainty
about the value of an expression: if pp′ is evaluated at w while p is false at
w, we just don’t know whether the clause is true or false; the same holds if
the presuppositional predicate PP ′ is evaluated with respect to a world w
and an individual d which make P false. The semantic module outputs the
value # in case this uncertainty cannot be resolved — which systematically
happens with unembedded atomic propositions whose presupposition is not
met. But in complex formulas it may happen that no matter how the value of
pp′ or PP ′ is resolved, one can still unambiguously determine the value of
the entire sentence. This is for instance the case if (q and pp′) is evaluated
in a which q and p are both false. pp′ receives the ‘indeterminate’ value #,
but no matter how the indeterminacy is resolved, it won’t affect the value of
the entire sentence, since it will be false anyway. The same reasoning can be
made with respect to every world in the context set: for any world w, the
sentence will have a determinate truth value in w just in case either (i) q is
false in w (so that it doesn’t matter how one resolves the indeterminacy of
the second conjunct); or (ii) q is true, and in that case the presupposition p
of the second conjunct is satisfied. Since we are solely interested in worlds
that are compatible with what the speech act participants take for granted,
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we derive the familiar prediction that the context set must entail that if q,
p. The beauty of this proposal is that its underlying intuition is completely
general: by treating presupposition failure as an instance of ‘uncertainty’
between truth and falsity, it provides a general recipe for determining under
what conditions the uncertainty in question does or does not matter for the
entire sentence.

The present analysis has one point in common with this trivalent ap-
proach: in order to determine whether a presupposition is justified, it checks
whether the information it contributes is in a sense innocuous. In the present
framework, for q to be innocuous in the formula (p and qq′), q must be en-
tailed by its local context, which is itself the strongest innocuous restriction
one can make on the interpretation of the second conjunct. This means that
in every world of the context set C, q itself should be an innocuous restric-
tion no matter what the second conjunct turns out to be. In the trivalent
analysis, we only demand that in any world w of C in which the presuppo-
sition q is not satisfied, the failure qq′ gives rise to should be innocuous no
matter how it is resolved. In simple cases (propositional examples involving
incremental versions of both theories), the two requirements turn out to
be equivalent — which is the reason both theories predict that (p and qq′)
presupposes that if p, q.

In quantified cases, however, the incremental version of the present theory
predicts stronger presuppositions than this trivalent analysis (see Schlenker
2008c for an argument). This is best illustrated on the example of the formula
(No P.QQ′). We saw that our reconstruction of local satisfaction predicts a
universal presupposition, of the form (Every P.Q); in effect, our condition is
very strong because we require that Q be an innocuous restriction no matter
what the main predicate turns out to be. The results are much weaker within
the trivalent approach because it takes the value of the main predicate as
given. To see this, suppose that all P -individuals except d fail to satisfy the
presupposition Q of the main predicate, but that d satisfies both Q and Q′.
No matter how the uncertainty about the value of QQ′ with respect to the
other individuals is resolved, we can be certain that the entire statement
will be false, because d alone suffices to refute it. So this is a case in which
our reconstruction of dynamic semantics predicts that the sentence should
be a presupposition failure, whereas the trivalent approach predicts that it
should be false. We leave a more detailed comparison for another occasion
(Schlenker 2008c). But it is clear that trivalent approaches are technically and
empirically different from our reconstruction of local satisfaction.
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4 Symmetric Local Contexts and Symmetric Satisfaction

In standard dynamic semantics, the left-to-right asymmetries observed in
projection patterns are hardwired in the lexical entries of the various oper-
ators. The present account is different: the asymmetry arises because the
local context of an expression E in a sentence S is computed incrementally,
on the basis of information available in S before E. But it is easy to define
the symmetric local context of E, which is computed on the basis of all of S
(except E, of course, whose interpretation the local context is supposed to
facilitate). There are well- known arguments in favor of a symmetric account
of disjunction, illustrated in (59a) and (59b); but they extend to conditionals,
as seen in (59c) and (59d):

(59) a. There is no bathroom or the bathroom is well hidden (after Partee).
b. The bathroom is well hidden or there is a no bathroom.
c. If there is a bathroom, the bathroom is well hidden.
d. If the bathroom is not hidden, there is no bathroom.

(59a) and (59c) are correctly predicted by dynamic semantics and the incre-
mental version of our account to carry no presupposition. By contrast, they
predict that (59b) and (59d) should presuppose that there is a bathroom.
The issue is complex and would require a longer discussion (see Schlenker
2008a,b); but it is plausible that in these examples the presupposition of
the first element is justified on the basis of information that appears at the
end of the sentence. In fact, when the entire sentence is taken into account,
(59b) becomes informationally indistinguishable from (59a). And similarly
for (59d) and (59c): trading on the near-equivalence between If not F, not G
and if G, F, when the entire sentence is taken into account, (59d) becomes in-
formationally similar to (59c) — which makes it unsurprising that they should
transmit presuppositions in the same way.

We take these observations to suggest that the local context of an ex-
pression E in a sentence S can to some extent be computed by taking into
account all of S except E. This option is presumably costly, since (59c) and
(59d) are somewhat less felicitous than (59b) and (59d). Still, it appears that
the left-right asymmetry we observed is just a bias, which can be overcome
with some effort. The general availability of symmetric readings has been
defended in Schlenker (2008a,b), Chemla (2008b), and Rothschild (2008b,c,a),
but it is currently controversial (see Beaver (2008) and Rothschild (2008c)
for opposite assessments). If correct, it can be accounted for by providing a
symmetric version of all the notions we introduced earlier, as is done in (60)
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(with the superscript s added to all the definitions to distinguish them from
their incremental counterparts):

(60) a. trs(C,d,a b) = {x : x is an object of the type specified by d and
for every constituent d′ of the same type as d, C îc′→x a d′c′ b⇐⇒
ad′b}

b. lcs(C,d,a b) = the bottom element of trs(C,d,a b), if it exists;
# otherwise.

c. Sats(C,dd′, a b) iff lcs(C,dd′, a b) ≤ d
d. Sats(C, F) iff for all ee′, a′, b′, if F=a′ ee′ b′, Sats(C, ee′, a′ b′).

Sample predictions (proven in Appendix C.24 are listed in (61); in particular,
(61b) and (61c) account for the data in (59c) and (59d).

(61) a. lcs(C, qq′, ( and p)) = lc(C, qq′, (p and )) = C ∧ p
b. lcs(C, qq′, ( or p)) = lc(C, qq′, (p or )) = C ∧ (not p)
c. lcs(C, qq′, if . p) = lc(C, qq′, (if (not p). (not ))) = C ∧ (not p)
d. lcs(C, PP ′, (Every (not ).Q)) = (not Q)C

e. lcs(C, PP ′, (No (not ).Q)) = QC

How could these predictions be tested? Let us focus on the predictions
of the symmetric analysis of (if qq′. p), given in (61c). It can be shown that
the symmetric local context of qq′ is C ∧ (not p). Since we take symmetric
satisfaction to be possible but dispreferred, we predict that if q is entailed by
(not p) but not by the global context, the sentence will have an intermediate
acceptability status. In order to obtain acceptability judgments (as opposed
to inferences), we can make use of presupposition triggers such as too,
which has the advantage of making accommodation — and in particular local
accommodation — very difficult or impossible (why this is so is another
matter, which goes beyond the present paper; see Beaver & Zeevat 2007 for
discussion). This means that when the presupposition of too is not satisfied,
the resulting sentence is deviant. One should thus ask subjects to rate the
acceptability of sentences such as those in (62),28 which are the object of an
ongoing experiment (conducted in collaboration with Emmanuel Chemla) in
French.

(62) L’évolution du salaire des fonctionnaires va être remise à plat.
the evolution of-the salary of-the civil-servants will be reset to flat
‘The evolution of state employees’ salaries will be reconsidered.’

28 Aussi associates with focus, which can cause undesired ambiguities. To circumvent the
problem, we inserted aussi right after a strong pronoun (e.g. eux aussi, literally ‘them too’),
which yielded unambiguous sentences.
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a. Si les infirmières sont augmentées, les salaires des enseignants
seront eux aussi { A. revalorisés / B. bloqués }.
if the nurses are getting-a-raise, the salaries of-the teachers will-be
them too { A. revalued / B. blocked }.
‘If the nurses get a raise, the teachers’ salaries too will be { A.
increased / B. frozen }’

b. Si les infirmières sont augmentées, les salaires des enseignants
seront { A. revalorisés / B. bloqués }.
if the nurses are getting-a-raise, the salaries of-the teachers will-be {
A. revalued / B. blocked }.
‘If the nurses get a raise, the teachers’ salaries will be { A. increased
/ B. frozen }.’

c. Si les salaires des enseignants ne sont pas eux aussi { A. revalorisés
/ B. bloqués }, les infirmières ne seront pas augmentées.
If the salaries of-the teachers NE are not them too { A. revalued / B.
blocked }, the nurses NE will-be not getting-a-raise
‘If the teachers’ salaries are not too { A. increased / B. frozen } too,
the nurses won’t get a raise.’

d. Si les salaires des enseignants ne sont pas { A. revalorisés / B.
bloqués }, les infirmières ne seront pas augmentées.
If the salaries of-the teachers NE are not { A. revalued / B. blocked },
the nurses NE will-be not getting-a-raise
‘If the teachers’ salaries are not { A. increased / B. frozen }, the
nurses won’t get a raise.’

(62a)A displays the canonical order if p, qq′ where p entails q: the presup-
position of the consequent is satisfied by the antecedent. (62a)B should
be deviant because the presupposition of the consequent is not entailed
by the antecedent, and is in fact contradictory with it. (62b) offers non-
presuppositional controls. Finally, (62c) and (62d) are analogous to (62a) and
(62b), except that if F, G is replaced with if not G, not F — which makes it
possible to test the predictions of the symmetric analysis. If presuppositions
are preferably satisfied incrementally, but can at some cost be satisfied sym-
metrically, we predict that (62a)A should be acceptable, that (62a)B and (62b)B
should unacceptable, and — crucially — that (62c)A should have an interme-
diate status (see Schlenker 2008b, Chemla 2008a, and Chemla & Schlenker
2009 for some experimental results that confirm the hypothesis).
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5 Perspectives

5.1 Presupposition and Accommodation

Now that we have seen how our reconstruction of local contexts can derive
some classic results, it is worth stepping back to ask what it means in the
present framework to presuppose something, and how accommodation can
be incorporated into the analysis.

The local context of an expression E can be seen as the semantic contri-
bution made by those words that precede E given the shared assumptions
of the speech act participants. As a result, any part of E which is entailed
by its local context will be redundant. We can thus view the presupposition
d of an expression dd′ as a part of the meaning that should not make any
contribution to the conversation — in other words, one that should be triv-
ial in its local context. In uttering S, a speaker presupposes that p just in
case p must be part of the common ground if the presupposition of every
expression dd′ that occurs in S is to be entailed by its local context. The
dynamic tradition viewed the local context of an expression E as a belief state
obtained by the speech act participants before E was taken into account, and
it similarly required that presuppositions be trivial in their local contexts.
With respect to unembedded clauses, the two approaches are similar: relative
to a context set C , the presupposition d of a clause dd′ is trivial just in case
it is entailed by C. With respect to embedded triggers, Stalnaker’s dynamic
approach had to rely on some ‘intermediate belief states’ — which led to the
conceptual and technical problems discussed in Section 1.1. By contrast, the
present approach has no difficulty assessing the contribution of the string
that precedes E when E is embedded; and it is just as unproblematic to check
that the presupposition of E (if any) is redundant in its local context.29

Turning to the topic of accommodation, we should distinguish between
two issues. Global accommodation is the process by which cooperative speech
act participants are willing (within reason) to revise their belief states to
guarantee that some linguistic constraints are satisfied in the conversational
exchange; thus if I tell you that My sister is pregnant, you will be willing to add
to your beliefs the assumption that I have a sister, even if this fact was not

29 The intuition that the presupposition of an expression E must make no semantic contribution
given the words that precede E is common to the present approach and to the Transparency
theory developed in Schlenker 2007, 2008a. This explains why equivalence results can be
proven between the two theories despite the fact that they are conceptually dissimilar. See
Appendix A for a more detailed discussion.
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common knowledge before I uttered the sentence. As noted in Lewis 1979,
the existence of such a process is virtually necessary given the cooperative
nature of communication. Local accommodation, by contrast, is a mechanism
that does not follow from conceptual considerations in Heim’s approach,30

though it is empirically motivated by examples like (63), which are marked
but nonetheless possible:

(63) The king of France isn’t bald because there is no king of France!

In this case, global accommodation won’t help because it would produce a
global context that entails that France is a monarchy — an undesirable out-
come, in particular in view of the end of the sentence. Heim 1983 suggested
that in this case one can apply, as a last resort, a rule of local accommodation:
the global context is left untouched, but the local context is strengthened
so as to entail the presupposition of the beginning of the first clause. If we
write as pp′ the king of France is bald (with p = France is a monarchy), the
update process in a context set C would normally proceed as in (64a), which
yields a failure if C doesn’t entail that France is a monarchy. By contrast,
(64b) is the update process with local accommodation, which guarantees that
the presupposition of pp′ is satisfied in its local context without thereby
implying that C must entail that France is a monarchy. As is seen in (64c),
this has the same effect as treating pp′ as if p were part of its assertive
component.

(64) a. Update without local accommodation
C[not pp′] = C − C[pp′], unless C[pp′] = #

b. Update with local accommodation
C[not pp′] = C − C′[pp′], with C′ = {w ∈ C : p is true in w}

c. C − C′[pp′] = C − C[p][pp′] = C − C[(p and p′)]

Building on the bivalence of our fragment, we can imitate the effects of
Heim’s local accommodation by stipulating that, in case global accommo-
dation fails, one may lift the requirement that the presupposition p of an
expression pp′ must be entailed by its local context. Since the semantic
component of our analysis already treats pp′ as bivalent, it has the same
meaning as (p and p′) and we immediately obtain the result in (64c).

30 It should be pointed out that the DRT approach of van der Sandt (1993) and Geurts (1999)
offers a different picture because it takes accommodation (whether local, intermediate or
global) to be the very foundation of the theory of presupposition computation. In that
framework, local accommodation is just as natural as global accommodation.
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Some researchers (van der Sandt 1993; Geurts 1999) have argued that
an additional process of ‘intermediate accommodation’ is sometimes avail-
able; it functions like local accommodation, but it targets a context which
is neither the local nor the global one to guarantee that the presupposition
of an expression is satisfied. The existence of such a process is contro-
versial (Beaver 2001), though it is very simple to implement in the DRT
framework. In any event, whatever stipulations can implement it within
Heim’s dynamic semantics can be adapted to the present framework: we
can stipulate that, under certain specified conditions, one can interpret a
sentence a[α. . . dd′ . . . ]b (where the constituent α has a type that ‘ends in t’)
as if it were ac+[α. . . dd′ . . . ]b, where c+ is a strengthened context, possibly
at an intermediate site, which guarantees that the presupposition of d is
entailed by its local context. In this case the presence of c+ may well affect
the truth conditions rather than just the felicity conditions of the sentence.
Of course, in the case of local accommodation this process is redundant
with the mechanism we sketched in the preceding paragraph, whereby a
presupposition is treated as if it were part of the asserted meaning. Thus the
leaner theory is the one that only postulates local accommodation; whether it
will suffice depends on the eventual outcome of the debate on intermediate
accommodation.

5.2 Concluding Remarks

To conclude, we hope to have shown that a modified notion of ‘local context’
can be defined which improves on dynamic semantics in two respects. First,
and foremost, the resulting theory of local satisfaction is fully predictive: as
soon as the classical semantics and the syntax of any operator are specified,
its projection behavior is automatically predicted as well. Second, it shows
that the main results of the dynamic approach to presuppositions can be
reconstructed within a theory that eschews Context Change Potentials, and
is in fact classical. Third, our analysis is potentially more fine-grained than
dynamic semantics because it can treat the left-to-right asymmetry found
in projection patterns as a processing bias rather than as a hard-wired
property of operators. This predicts gradient judgments of acceptability, and
might account for the existence — and relative difficulty — of a variety of new
‘symmetric readings’.

In addition to the issue of accommodation, three main questions remain
for future research. First, can the limited availability of symmetric readings
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be demonstrated experimentally? Second, how does our approach compare
to other recent solutions to the projection problem which also address the
Explanatory Challenge introduced in Section 1.1 — in particular, the trivalent
accounts of George (2008a,b) and Fox (2008), the dynamic approaches of
Rothschild (2008b,c) and LaCasse (2008), and the implicature-based analysis
of Chemla (2008b)? Finally, how do recent experimental results (e.g. Chemla
2009, 2008a) bear on the present theory? Initial data confirm some of our
results (e.g. the existence of univeral projection under the determiner no), but
raise important new challenges: contrary to the predictions of the present
theory, presupposition projection out of restrictors and out of the scope of
numerical quantifiers (more than five, less than five, exactly five) does not
appear to give rise to universal inferences; some of the competing accounts
(especially those of George, Fox and Chemla) might in this respect be at an
advantage. The debate promises to be lively.

A Equivalence with the Transparency Theory and with Dynamic Seman-
tics

In this appendix, we show that our reconstruction of dynamic semantics is
equivalent to the Transparency theory, an analysis that was initially presented
as anti-dynamic. The incremental version of the Transparency theory was
itself shown in earlier work to be equivalent to Heim’s dynamic semantics
under relatively broad conditions (Schlenker 2007); when these are satisfied,
we thus have an indirect proof that the incremental version of the present
proposal is equivalent to Heim’s dynamic semantics. Throughout this section,
we assume that local contexts exist, which is not always the case; we revisit
this question in Appendix B, where we show that a natural extension of our
proposal yields full equivalence with the Transparency theory even when
local contexts fail to exist.

A.1 The Transparency Theory

The Transparency theory purports to do without any notion of local context,
and to explicate presupposition projection in purely pragmatic terms, on the
basis of two Gricean principles of manner. Starting from a sentence S and
a specification of its classical semantics (with distinguished presupposition
triggers), the reasoning is as follows.
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A presupposition is viewed as a distinguished entailment, one that ’wants’
to be articulated as a separate conjunct. All things being equal, then, one
should say It is raining and John knows it rather than John knows that it is
raining. The constraint that demands that presuppositions be articulated
separately is called Be Articulate; it can be seen as a Gricean maxim of manner,
since it imposes a condition on the way in which certain meanings should be
expressed.

(65) Be Articulate
Say a (dand dd′) b rather than a dd′ b.

A second principle of manner, Be Brief, limits the effects of Be Articulate.
The intuition is that in any syntactic environment a b, one should not say
a (dand blah) b in case the words dand are certain to be eliminable without
truth-conditional loss. Be Brief was taken to come in an incremental and in a
symmetric version.

In the incremental version, d and is considered idle in case no matter
what follows, these words are certain to be eliminable given what is already
assumed in the conversation. For instance, if it is already assumed that
John is in Paris, it will be idle to start any sentence with John is in Paris
and. . . . Similarly, no matter what is assumed, a sentence that starts with
If John is staying near the Louvre, he is in Paris and . . . will contain a
redundancy, because the words in bold are certain to be eliminable without
truth conditional loss.

In the symmetric version of Be Brief, the entire syntactic environment of
a conjunction . . . F andG . . . is taken into account when deciding whether
the words F and are redundant. All the cases excluded by the incremental
version are excluded by the symmetric version, but additional cases are ruled
out by the symmetric version. For instance, John is in Paris and he is happy,
if he is staying near the Louvre is prohibited by the symmetric but not by the
incremental version; for no matter what the second conjunct blah turns out
to be, one can be certain that John is in Paris and blah, if John is staying near
the Louvre is equivalent to Blah, if John is staying near the Louvre.
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(66) Be Brief (Slightly generalized from Schlenker 2008b)
Let C be a context set, and let d be an occurrence of an ex-
pression whose type ‘ends in t’ in a sentence a(dand d′) b.
a. Incremental version
d is ‘incrementally transparent’ — and violates the incremental
version of Be Brief — just in case for any expression g of the same
type as d, for any good final b′, C î a(dand g)b′⇐⇒ ag b′.

b. Symmetric version
d is ‘symmetrically transparent’ — and violates the symmetric ver-
sion of Be Brief — just in case for any expression g of the same
type as d, C î a(dand g)b⇐⇒ ag b

With these principles in place, a theory of presupposition projection was
developed by positing that Be Brief cannot be violated, while Be Articulate
can be. This may be encoded by postulating (for instance in an optimality-
theoretic framework) that Be Brief is more highly ranked than Be Articulate:

(67) Be Brief >> Be Articulate

Together, these principles predict that in any syntactic environment a presup-
position trigger dd′ must be expressed as (dand dd′), unless d is (incremen-
tally or symmetrically) transparent. To give an example, pp′ presupposes
that p, because it is precisely in case C î p that we can be sure that for any
g, C î (p and g)⇐⇒ g. Similarly, (if p.pp′) does not presuppose anything,
because no matter what C and g are, C î (if p. (p and g))⇐⇒ (if p.g). The
same reasoning could in principle apply to the sentence pp′if p, but only
if we apply the symmetric rather than the incremental version of Be Brief.
Furthermore, we can posit that both versions of Be Brief are in fact at work,
but that an articulated sentence is more deviant — and hence its unarticulated
counterpart more acceptable — if it is ruled out by the incremental version of
Be Brief. This immediately derives the preference for sentences of the form
(p and qq′) over (qq′ and p) in case p entails q.

Taken together, Be Brief and Be Articulate imply that a presupposition
trigger dd′ in a syntactic environment a b satisfies the incremental or
the symmetric version of the Transparency theory just in case its com-
petitor a(dand dd′) b is ruled out by the relevant version of Be Brief. To
indicate that dd′ is acceptable according to the incremental or symmet-
ric version of the Transparency theory, we write Transpi(C,dd′, a b) or
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Transps(C,dd′, a b).

(68) a. Transpi(C,dd′, a b) iff for any expression g of the same type as
d, for any good final b′, C î a(dand g)b′⇐⇒ ag b′.

b. Transps(C,dd′, a b) iff for any expression g of the same type as
d, C î a(dand g)b⇐⇒ ag b.

We can then say that a formula f is acceptable according to the Trans-
parency theory just in case every occurrence of any presupposition trigger
dd′ is acceptable; and here too the notion comes in two versions, though
both are defined in the same way relative to the relevant version of Transp.

(69) For any v ∈ {i, s}, Transpv(C, F) iff for every expression dd′, for all
strings a, b, if F = add′ b, then Transpv(C,dd′, a b).

In Schlenker 2007, it was shown that for the very fragment we have as-
sumed in the present article, with expressions of the form (not F), (F andG),
(F orG), (if F.G), (QF.G), the incremental version of the Transparency the-
ory derives almost all the results of Heim 1983. We will now extend these
results to our reconstruction of dynamic semantics by showing that the latter
is itself equivalent to the Transparency theory; near-equivalence with Heim’s
dynamic semantics will immediately follow.

A.2 Equivalence with the Transparency theory

Our reconstruction of dynamic semantics does things in two steps:

(70) It starts by defining the local context of an expression dd′ in an
environment a b as the strongest c′ for which c′ is (incrementally or
symmetrically) transparent in a gc′ b relative to the context set C .

(71) It then requires that the value of c′ should entail d.

The Transparency theory does essentially the same thing, but in a single
step: given a sentence add′ b, it simply asks whether d is (incrementally
or symmetrically) transparent no matter what the assertive component d′

turns out to be. Because the theory is based on a competition between
add′ b and its ‘articulated’ competitor a(dand dd′) b, the relevant notion
of ‘transparency’ involves a full conjunction (i.e. we ask whether dand could
be eliminated without truth-conditional loss), but the end result is still that
the presupposition must be transparent.
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It can be shown that whenever the local context dd′ exists, dd′ satisfies
Transparency (in its incremental or symmetric version) just in case d is
entailed by its (incremental or symmentric) local context. Using again the
superscript i for incremental notions and s for their symmetric counterparts,
we obtain the following result:

(72) Equivalence with Transparency — Special Case
For any v ∈ {i, s}, for every formula that has the form
add′ b, if lcv(C,dd′, a b) 6= #,
then Transpv(C,dd′, a b) iff Satv(C,dd′, a b).

The argument is straightforward; we only sketch it for the incremental
version (the argument is analogous for the symmetric version, taking b′ = b).

First, suppose that Transpi(C,dd′, a b). Then for every g of the same
type as d and for every good final b′, C î a(dand g)b′ ⇐⇒ ag b′. Using
our superscript notation, this also means that C î a dg b′ ⇐⇒ ag b′, and
thus that d is a transparent restriction for g. Since lci(C,dd′, a b) is the
bottom element of the set of transparent restrictions, it immediately follows
that lci(C,dd′, a b) ≤ d.

Second, suppose that lci(C,dd′, a b) ≤ d. Then for every g of the same
type as d, for every good final b′:

(73) a. C îc′,lc
i
(C,dd′,a b) a gc′ b′⇐⇒ ag b′

b. C îc′,lc
i
(C,dd′,a b) a c′(dand g)b′⇐⇒ a(dand g)b′

Since lci(C,dd′, a b) ≤ d, replacing g with (dand g) in a gc′ b′ won’t affect
the truth conditions:

(74) C îc′,lc
i
(C,dd′,a b) a gc′ b′⇐⇒ a (dand g)c′ b′

Putting (73a–b) and (74) together, we conclude that:

(75) C îc′,lc
i
(C,dd′,a b) a (dand g)c′ b′⇐⇒ ag b′

Since c′ does not occur in this formula, the value assigned to c′ is irrelevant
and we obtain the result that C î a(dand g)b′⇐⇒ ag b′, which shows that
dd′ satisfies Incremental Transparency.

More generally, it follows that an entire formula F satisfies Transparency
(in its incremental or symmetric version) just in case each presupposition is
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entailed by its (incremental or symmetric) local context:

(76) Consequence
For any a and any v ∈ {i, s}, for any formula F , for every expression
dd′ and for all strings a,b, if F = add′ b and if lcv(C,dd′, a b) ≠ #,
then: Transpv(C, F) iff Satv(C, F)

A.3 Equivalence with Standard Dynamic Semantics

It was shown in Schlenker 2007 that in the propositional case the incremental
version of the Transparency theory is fully equivalent to Heim’s dynamic
semantics (augmented with the asymmetric dynamic disjunction of Beaver
2001). In the quantificational case, the equivalence holds only if two addi-
tional assumptions are made:31

(77) Non-Triviality
Quantificational clauses should not be ‘trivial’ (i.e. replaceable with a
tautology or a contradiction).

(78) Constancy
The domain is finite, and in addition restrictors should hold true of a
constant number of individuals throughout the context set.

These assumptions are stated precisely in Appendix C.9 and in Schlenker
2007. Let us just recapitulate the main conclusion:

(79) Under the assumptions of Non-Triviality and Constancy,
a. C[F] ≠ # iff Transpi(C, F).
b. If C[F] ≠ #, C[F] = {w ∈ C : w î F}

We just showed that whenever local contexts exist, our reconstruction of
dynamic semantics is equivalent to the Transparency theory. Furthermore,

31 Non-Triviality without Constancy does not suffice to predict universal presuppositions for
all generalized quantifiers. Consider for instance the sentence (less than 2 students.QQ′) in
a context set C, with C = {w,w′}, student(w) = {s}, student(w′) = {s, s′}, Q(w) = � and
Q(w′) = {s, s′}, and Q′(w) = Q′(w′) = {s, s′}. We note that w î (less than 2 students.QQ′)
while w′ 6î (less than 2 students.QQ′), so Non-Triviality is satisfied (because this quantifi-
cational statement is equivalent neither to a tautology nor to a contradiction). Still, we
have that for every d′, C î (less than 2 students.(Qand d′)) ⇐⇒ (less than 2 students. d′),
despite the fact that w 6î (every student. d). The point is that the one and only student in
w , namely s, does not satisfy the presupposition Q, but since the quantificational statement
evaluated at w is trivially true, this does not affect the principle of Transparency.
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Constancy entails that in each world the domain of individuals is finite,
which by results proven in Appendix C.16 guarantees that local contexts
always exist (see also Appendix B for discussion). So we obtain in this way
a relatively general equivalence between the present system and standard
dynamic semantics.

(80) Equivalence with Standard Dynamic Semantics
Let C be a context set and F be a formula which satisfies Non-Triviality
and Constancy. Then for every presupposition trigger dd′, for all
strings a,b, if F = add′ b, then lci(C,dd′, a b) ≠ #. Furthermore,
Sati(C, F) iff C[F] ≠ #.

A.4 Differences between the Transparency theory and the present anal-
ysis

Despite these results of equivalence, there are several differences between
the Transparency theory and the present theory. The most important one is
conceptual: the Transparency theory has no notion of local contexts, and is
entirely based on Gricean maxims of manner; by contrast, the present analysis
follows Stalnaker, Karttunen and Heim in positing that a presupposition
must be satisfied in its local context. As a result, some of the conceptual
arguments leveled against the Transparency theory do not hold against the
present analysis. Specifically, critics of the Transparency theory objected
that (a) Be Articulate lacks independent motivation, and that (b) it sometimes
makes incorrect predictions in case either the articulated competitor of the
form (dand dd′) is ungrammatical, or is too complicated to be expressed.32

Since Be Articulate plays no role in the present theory, neither of those
potential problems arises here. On the other hand, empirical criticisms (for
instance with respect to the predictions of the symmetric versions of either
analysis) have the same bite for both theories.

Still, there are other differences between the Transparency theory and
our reconstruction of local contexts.

i. As was pointed out in Section 3.3, our analysis of local contexts can
offer a general theory of ‘local triviality.’ By contrast, the versions of

32 See the commentaries by Beaver (2008), Chemla (2008c), Fox (2008), Krahmer (2008), Roth-
schild (2008c), Sauerland (2008), and van der Sandt (2008) in Theoretical Linguistics, which
also includes a reply (Schlenker 2008b).
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Be Brief that are assumed in the Transparency theory are by no means
general: they explain under what conditions the first conjunct of an
expression F andG is redundant, but they are hopelessly silent about
innumerable cases of redundancy; for instance, they are powerless
to explain why if F, F or F or F are felt to be redundant, since these
examples do not even include a conjunction.33

ii. The symmetric version of the Transparency theory is difficult to mo-
tivate, whereas the symmetric version of our reconstruction of local
contexts falls out more naturally. As was mentioned above, incre-
mental Transparency can be motivated on the basis of a processing
metaphor: the beginning of a conjunction, F and , is incrementally
transparent just in case one can determine as soon as one has heard
it that it is certain to be eliminable without truth-conditional loss.
But the symmetric version is much less natural: one must somehow
pretend that one has heard the beginning of the sentence a, the end of
the sentence b, and the beginning of the conjunction d, but crucially
not the end of the conjunction [and] d′.34 The symmetric theory
of local contexts is arguably more natural: it simply computes the
local context of an expression E by taking into account the entire
environment in which E occurs.

iii. Finally, it should be mentioned that in case local contexts fail to exist,
the Transparency theory is simpler than our reconstruction of local
contexts. The latter must be extended to deal with these cases - which
is the topic of Appendix B.

33 The Transparency theory also fails to explain why F and G is deviant when G follows from
F , as in (57) in the text, copied below as (i):

(i) a. John is in Paris, and he is staying near the Louvre.

b. #John is staying near the Louvre, and he is in Paris.

34 This odd wrinkle is arguably essential to make the right predictions. Consider for instance
the sentence It is John who won. The negation and the question tests suggest that its
presupposition is that exactly one person won; and the assertive component has to be that
John won. But in most cases, if John won, nobody else did, so the assertive component
(quasi-)entails the presupposition. If one did take into account the second conjunct when
determining whether the first one is redundant, one would have to predict that Exactly one
person won and it is John who did must be ruled out by the symmetric version of Be Brief.
Since the articulated competitor is ruled out, the sentence It is John who won should in
general be acceptable without a presupposition! This appears to be incorrect.
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B Existence of Local Contexts

In this Appendix, we characterize the cases in which local contexts exist,
and extend the theory to cases in which they don’t. In a nutshell, as long as
the semantics is extensional and the domain of individuals in each possible
world is of finite size, we can guarantee that local contexts exist. But the
result fails to hold when infinite domains are considered; in such cases the
satisfaction theory must be redefined in a slightly more complicated way.

B.1 When local contexts exist

In the propositional case, it can be shown that local contexts (both incremen-
tal and symmetric) always exist; a simple proof is given in Appendix C.16(i).
In the quantificational case, local contexts may fail to exist, for reasons we
will turn to shortly. But there are still broad conditions under which their
existence is guaranteed. The details of the proof are laid out in Appendix
C.16(ii), but the main observation is quite simple. In all cases, the set of
transparent restrictions is closed under finite (generalized) conjunction: if x
and x′ are two transparent restrictions, then so is x ∧ x′. When the set of
transparent restrictions is finite, we can ensure that it has a bottom element.
For instance, if the set contains the context denotations x1, x2 and x3, we
start by taking the intersection of x1 and x2, which entails both and must be
in the set; then we take its intersection with x3 — the result is again in the set,
and it entails x1, x2, and x3, so it is the bottom element we were looking for.
The procedure can be applied whenever the set of transparent restrictions is
finite. This condition happens to be met whenever all the relevant domains
of individuals are themselves finite. So we can derive a general condition that
guarantees that local contexts do exist.

B.2 When local contexts don’t exist

Interestingly, there are cases in which local contexts don’t exist. From
the preceding remarks, we can already infer that the relevant examples
must involve infinite domains of individuals. We start from the formula
(infinitely-many P. Qc

′
), and consider the set of transparent values for c′ (in

this case there is no difference between the incremental and the symmetric
version of the analysis). We assume that there are infinitely many elements in
P(w), the value of P at a certain world w of C . Now we note that for c′ to be
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transparent in (infinitely-many P. Qc
′
), its value x must be such that x(w)

contains infinitely many elements. For if not, (infinitely-many P. Qc
′
) would

be false at w but (infinitely-many P. P) would be true — and c′ wouldn’t be
transparent after all. Next, we show that for any transparent value x for
c′, we can find a ‘smaller’ value x′ which is also transparent. We define x′

as identical to x, except that we take one arbitrary element out of x(w). It
is clear that x′, which itself contains infinitely many elements, is transpar-
ent — for the simple reason that the truth of the statement infinitely many Ps
are Qs is utterly insensitive to whatever happens to any given finite set of
elements. Since x was arbitrary, we have shown that the set of transparent
restrictions does not have a bottom element (see Appendix C.23 for a more
thorough treatment).

What can be done in this case? The problem arose because we have an
infinite series of increasingly stronger transparent values for c′, with no
bottom element. One solution is to redefine the notion of satisfaction in a
way that does not depend on the existence of a bottom element. This can be
done by introducing a notion Sat′ which is defined directly in terms of the
set T of transparent restrictions: the presupposition is satisfied in this new
sense just in case there exists a member of T such that every element of T
that entails it also entails the presupposition.35 As before, this notion comes
in an incremental and in a symmetric version, which we distinguish using the
superscripts i and s respectively.

(81) For every v ∈ {i, s}, Sat′v(C,dd′, a b) iff for some x ∈
trv(C,dd′, a b), for every x′, if [x′≤x and x′ ∈ trv(C,dd′, a b)],
then C îc′,x′ c′ ≤ d.

Of course when the set T of transparent restrictions has a bottom element
c∗, a presupposition is satisfied in the new sense just in case it is in the
old sense: if c∗ entails the presupposition, taking x = c∗, we immediately
see that the condition in (81) is met. Conversely, if the condition in (81) is
met, then the bottom element c∗ must entail the presupposition, which is
thus satisfied in the old sense. However when local contexts fail to exist, we

35 It can be noted that the problem we face and the solution we explore have counterparts in
David Lewis’s study of Counterfactuals (1973). Lewis defined a non-monotonic semantics
for conditionals whose main intuition was that if F, G is true in world w just in case the
closest F -worlds from w are also G-worlds. But Lewis argued that sometimes there is an
infinite series of increasingly ‘closer’ F -worlds to w; for such cases the truth conditions of
conditionals had to be adapted. In essence, if F, G was deemed true just in case for some
world x, every F -world which is closer than it (to the world of evaluation) is a G-world.
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obtain new predictions, which turn out to be fully equivalent to those of the
Transparency theory:

(82) Equivalence with Transparency — General Case
The revised definition of satisfaction yields full equivalence with
the Transparency theory. Specifically, for any v ∈ {i, s}, for
every formula that has the form a dd′ b, Sat′v(C,dd′, a b) iff
Transpv(C,dd′, a b).

A simple proof is given in Appendix C.21. This equivalence need not be a
good thing, because in the somewhat arcane cases in which local contexts
don’t exist the Transparency theory (and our revised theory of satisfaction)
make predictions that are arguably too weak (see Appendix C.23). It might
thus prove fruitful in future research to explore alternative extensions of our
primitive notion of satisfaction to derive slightly stronger predictions.

C Definitions and Formal Results

In this appendix, we define one base language (called L) and compare three
accounts of presupposition projection in that language: dynamic semantics,
the Transparency theory, and our reconstruction of local satisfaction.36

C.1 Syntax of L

• Generalized quantifiers: Q ::= Qi

• Predicates: P ::= Pi | PiPk

• Propositions: p ::= pi | pipk

• Formulas: F ::= p | (not F) | (F and F) | (F or F) | (if F.F) | (Qi P. P)

To state some of our principles, the official object language is enriched with:

• Predicate conjunction: if P and P ′ are predicates, so is (P and P ′).

• Restrictions of predicative and propositional types:

36 The Transparency theory is an essential intermediary because it was shown in earlier work
to be partly equivalent to dynamic semantics (Schlenker 2007); since our reconstruction of
local satisfaction is itself technically close to the Transparency theory, as shown in Appendix
A, we obtain the main equivalence results through the Transparency theory.
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– if c′ is a predicative context variable and if P is a predicate, Pc
′

is
a predicative expression;

– if c′ is a propositional context variable and if F is a formula, Fc
′

is a formula.

The ‘propositional fragment’ of L is the language defined by the expressions
in bold.

We start by defining a classical semantics, which we call I. On a technical
level, we assume that:

• each propositional letter is assigned by I a function of type 〈s, t〉

• each predicate letter is assigned by I a function of type 〈s, 〈e, t〉〉

• each generalized quantifier Qi corresponds to a ‘tree of numbers’ fi,
which associates a truth value with each pair of the form (a, b) with
a = the number of elements that satisfy the restrictor but not the
nuclear scope and b = the number of elements that satisfy both the
restrictor and the nuclear scope.

Logical constants are given a syncategorematic semantics.
Instead of writing I(F)(w) = 1, we sometimes use the notation w î F .

We will also abbreviate I(F)(w) as Fw . When we use an extended language to
state some of our principles, we will sometimes need assignment functions,
and we will writew îs F , Fw,s to indicate relativization of the relevant notions
to the assignment function s.

When certain elements are optional, we place angle brackets 〈· · · 〉 around
them and around the corresponding part of the semantic rules.
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C.2 Classical Semantics (Called I in what follows)

w î p iff pw = 1
w î pp′ iff pw = p′w = 1
w î (not F) iff w 6î F
w î (F andG) iff w î F and w î G
w î (F orG) iff w î F or w î G
w î (if F.G) iff w 6î F or w î G
w î (Qi〈P〉P ′ . 〈Q〉Q′) iff fi(aw , bw) = 1, with

aw =
{
d ∈ D : 〈Pw(d)=1 and〉 P′w(d)=1 and

〈Qw(d)=0 or〉 Q′w(d)=0
}

bw =
{
d ∈ D : 〈Pw(d) = 1 and〉 P′w(d)=1 and

〈Ww(d)=1 and〉 Q′w(d)=1
}

For reasons of simplicity, we will assume throughout that L is extremely
expressive: any proposition or property can be expressed by an atomic
expression:

C.3 Expressivity Every proposition and every property is denoted by some
atomic expression of L.

We repeat from the text our definitions of generalized entailment and
generalized conjunction; they are intended for much richer type-theoretic
languages, but are applicable in the present framework.

C.4 Generalized Entailment

i. If x and x′ are two objects of a type τ that ‘ends in t,’ and can take at
most n arguments, x ≤ x′ just in case whenever yi, . . . yn are objects
of the appropriate type, if x(y1) . . . (yn) = 1, then x′(y1) . . . (yn) = 1.

ii. If E and E′ are two expressions of a type τ that ‘ends in t,’

w îs (E ≤ E′) iff Ew,s ≤ E′w,s
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C.5 Generalized Conjunction

i. If x and x′ are two objects of a type τ that ‘ends in t,’ and can take at
most n arguments, of types τ1, . . . , τn respectively, then

x ∧ x′ = λy1τ1 . . . λynτn
[
x(y1) . . . (yn) = x′(y1) . . . (yn) = 1

]
ii. If E and E′ are two expressions of a type τ that ‘ends in t,’

( EE′ )w,s = (E′ and E)w,s = E′w,s∧ Ew,s

We define on the basis of C.2 a dynamic semantics which corresponds
to Heim’s analysis (Heim 1983), except that (i) it applies to all generalized
quantifiers, (ii) it does not include variables, (iii) it applies to disjunction,
which Heim does not discuss (here we follow Beaver 2001).

C.6 Dynamic Semantics

C[p] = {w ∈ C : pw = 1}
C[pp′] = # iff for some w ∈ C , pw = 0

if ≠ #, C[pp′] = {w ∈ C : p′w = 1}
C[(not F)] = # iff C[F] = #

if ≠ #, C[(not F)] = C − C[F]
C[(F andG)] = # iff C[F] = # or (C[F] ≠ # and C[F][G] = #)

if ≠ #, C[(F andG)] = C[F][G]
C[(F orG)] = # iff C[F] = # or (C[F] ≠ # and C[not F][G] = #)

if ≠ #, C[(F orG)] = C[F]∪ C[not F][G]
C[(if F.G)] = # iff C[F] = # or (C[F] ≠ # and C[F][G] = #)

if ≠ #, C[(if F.G)] = C − C[F][not G]
C[(Qi 〈P〉P ′. 〈R〉R′)] = # iff 〈for some w ∈ C, d ∈ D, Pw(d) = 0〉 or

〈for some w ∈ C, d ∈ D, 〈Pw(d) = 1 and〉
P′w(d) = 1 and Rw(d) = 0〉

if ≠ #, C[(Qi 〈P〉P ′. 〈R〉R′)] =
{w ∈ C : fi(aw , bw) = 1}

with

aw ={d ∈ D : 〈Pw(d)=1 and〉 P′w(d)=1 and 〈Qw(d)=0 or〉 Q′w(d)=0}
bw ={d ∈ D : 〈Pw(d)=1 and〉 P′w(d)=1 and 〈Ww(d)=1 and〉 Q′w(d)=1}
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The Transparency theory is based on the classical semantics in C.2; it
comes in an incremental version and in a symmetric version.

C.7 Transparency: Principles

i. Be Articulate
In any syntactic environment, express the meaning of an expression
dd′ as (dand dd′).

ii. Be Brief — Incremental Version
Given a context set C, a predicative or propositional occurrence of
d is infelicitous in a sentence that begins with α (dand if for any
expression γ of the same type as d and for any good final β,

C î
[
α(dand γ)β

]
⇐⇒

[
αγ β

]
iii. Be Brief — Symmetric Version

Given a context set C, a predicative or propositional occurrence of d
is (somewhat) infelicitous in a sentence of the form α (dand d′) β if
for any expression γ of the same type as d,

C î
[
α (dand γ) β

]
⇐⇒

[
αγ β

]
iv. Ordering of Principles

Be Brief (in either version)� Be Articulate.

C.8 Transparency: Derived Notions

i. Incremental Transparency
= Be Articulate + Incremental Version of Be Brief
Let C be a context set and F be a formula. F satisfies Incremental
Transparency relative to C (abbreviation: Transpi(C, F)) just in case
for any presuppositional expression dd′, for any strings α and β, if
F = αdd′ β, then for any constituent γ of the same type as d and for
any good final β′,

C î
[
α(dand γ)β′

]
⇐⇒

[
αγ β′

]
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ii. Symmetric Transparency
= Be Articulate + Symmetric Version of Be Brief
Let C be a context set and F be a formula. F satisfies Symmetric
Transparency relative to C (abbreviation: Transps(C, F)) just in case
for any presuppositional expression dd′, for any strings α and β, if
F = αdd′ β, then for any constituent γ of the same type as d,

C î
[
α(dand γ)β

]
⇐⇒

[
αγ β

]
In a broad range of cases, the incremental version of Transparency theory

is equivalent to standard dynamic semantics.

C.9 Incremental Transparency vs. Standard Dynamic Semantics (from
Schlenker 2007)

i. Non-Triviality
Let C ⊆ W be a context set and let F be a formula. 〈C, F〉 satisfies Non-
Triviality just in case for any initial string of F of the form αA, where
A is a quantificational clause (i.e. a formula of the form (QiG . H)),
there is a good final β such that:

C 6î
[
αAβ

]
⇐⇒

[
αT β

]
C 6î

[
αAβ

]
⇐⇒

[
αF β

]
where T is a tautology and F is a contradiction.

ii. Constancy
Let C be a context set and F be a formula. 〈C, F〉 satisfies Constancy
just in case

a. the (unique) domain of individuals is of constant finite size over
C , and

b. the extension of each restrictor that appears in F is of constant
size over C .

iii. Theorem 1
Consider the propositional fragment of L. Let C ⊆ W be a context set
and let F be a formula. Then

a. Transpi(C, F) iff C[F] ≠ #
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b. If C[F] ≠ #, C[F] = {w ∈ C : w î F}

iv. Theorem 2
[Here we state only a consequence of Theorem 2 from Schlenker 2007.]

Let C ⊆ W be a context set and let F be a formula of L. Suppose that
〈C, F〉 satisfies Non-Triviality and Constancy. Then

a. Transpi(C, F) iff C[F] ≠ #

b. If C[F] ≠ #, C[F] = {w ∈ C : w î F}

We not turn to the definition of transparent restrictions, of local contexts
and of local satisfaction.

C.10 Transparent Restrictions Let C ⊆ W be a context set and let adb be
a formula, where d has a type that ‘ends in t’; let c′ be a variable of the same
type as d.

i. tr i(C,d,a b) = {x : x is an object of the type specified by d and for
every constituent d′ of the same type as d, for every good final b,
C îc′→x

[
a d′c′ b′

]
⇐⇒

[
ad′ b′

]
}

ii. trs(C,d,a b) = {x : x is an object of the type specified by d and for
every constituent d′ of the same type as d,
C îc′→x

[
a d′c′ b

]
⇐⇒

[
ad′ b

]
}

C.11 Local Contexts

i. lci(C,d,a b) = the bottom element of tr i(C,d,a b) if such an ele-
ment exists; # otherwise.

ii. lcs(C,d,a b) = the bottom element of trs(C,d,a b) if such an ele-
ment exists; # otherwise.

C.12–C.16 are concerned with the existence of local contexts.

C.12 Lemma 1. Propositional Fragment For any C ⊆ W , for any formula
E, if aE b is a formula of the propositional fragment, lci(C, E,a b) ≠ # and
lcs(C, E,a b) ≠ #.

Proof. We define LCi := λw.1 iff for some formula g, for some good final b′,
w 6îf→F

[
a gf b′

]
⇐⇒

[
ag b′

]
, where F is a contradiction.
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Step 1: LCi ∈ tr i(C, E,a b)

For every w ∈ C , either LCi(w) = 1, in which case the contextual restriction
LCi is innocuous at w and w îc′→LCi

[
a gc′ b′

]
⇐⇒

[
ag b′

]
; or LCi(w)= 0,

which means that for every formula g, for every good final b′, w îf→F[
a gf b′

]
⇐⇒

[
ag b′

]
, and thus w îc′→LCi

[
a gc′ b

]
⇐⇒

[
ag b′

]
.

Step 2: For every x ∈ tr i(C, F, a b), LCi entails x.

Suppose, for contradiction, that LCi(w) = 1 and x(w) = 0. Since x ∈
tr i(C, F, a b), for every formula g and good final b′, w îc′→x

[
a gc′ b

]
⇐⇒[

ag b′
]
, and since x(w)=0 and the logic is extensional, wîf→F

[
a gf b′

]
⇐⇒[

ag b′
]
. But by the definition of LCi this means that LCi(w) = 0, contrary to

hypothesis. The proof is similar for lcs(C, F, a b) 6= #.

C.13 Lemma 2. Closure under Finite Conjunction For any C ⊆ W , for
any formula adb, tr i(C,d,a b) and trs(C,d,a b) are closed under finite
conjunction.

Proof. Assume that x′, x′′ ∈ tr i(C,d,a b). We have in particular that for
any admissible d′ and for any good final b′,

By the semantics of Fe ,

C îe→x′∧x′′, c′→x′, c′′→x′′
[
a d′e b′

]
⇐⇒ D

[
a (c′′ and d′)c′ b′

]
(83)

Because x′ ∈ tr i(C,d,a b),
C îe→x′∧x′′, c′→x′, c′′→x′′

[
a (c′′ and d′)c′ b′

]
⇐⇒

[
a(c′′ and d′) b′

]
(84)

By the semantics of Fc
′′

,

C îe→x′∧x′′, c′→x′, c′′→x′′
[
a(c′′ and d′) b′

]
⇐⇒

[
a d′c′′ b′

]
(85)

Because x′′ ∈ tr i(C,d,a b),
C îe→x′∧x′′, c′→x′, c′′→x′′

[
a d′c′′ b′

]
⇐⇒

[
a′ d′ b′

]
(86)

By (83–86),

C îe→x′∧x′′, c′→x′, c′′→x′′
[
a d′e b′

]
⇐⇒

[
a′ d′ b′

]
(87)

By (87) since c′ and c′′ don’t appear,

C îe→x′∧x′′
[
a d′e b′

]
⇐⇒

[
a′ d′ b′

]
(88)

(x′ ∧ x′′) ∈ tr i(C,d,a b)(89)

The proof is similar for trs(C,d,a b).
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C.14 Lemma 3: Finite Sets For every v ∈ {i, g}, if trv(C,d,a b) is finite

(90) lcv(C,d,a b) ≠ #

Proof. Immediate from C.13.

C.15 Lemma 4: Pointwise Construction of Local Contexts (This lemma
crucialy relies on the extensionality of the fragment.) For every v ∈ {i, g}, if
for every w ∈ C , lcv({w}, d, a b) ≠ #, then lcv(C,d,a b) ≠ #.

Proof. The idea is to construct the bottom element point-wise, i.e. world by
world. We define LCv as λws . lcv({w}, d, a b) if w ∈ C , z otherwise, where
z is the null object of type t if d is propositional, and where z is the null
object of type 〈e, t〉 if d is predicative.

It is immediate that LCv ∈ trv(C,d,a b) (because of the extensionality
of the fragment).

Suppose, for contradiction, that for some x ∈ trv(C,d,a b), x is not
entailed by LCv . Then there is some world w such that x(w) is not entailed
by LCv(w). It couldn’t be that w 6∈ C, since in that case LCv(w) = z,
which entails everything. So w ∈ C. Clearly, since x ∈ trv(C,d,a b),
x(w) ∈ trv({w}, d, a b). But by assumption LCv(w) is the bottom element
of trv({w}, d, a b), so it entails x(w), contra hypothesis.

C.16 Existence Theorem: Existence of Local Contexts Let C ⊆ W be a
context set and let aE b be any formula.

i. If add′b belongs to the propositional fragment, then for every v ∈
{i, s}, lcv(C, E,a b) ≠ #.

ii. If for every w ∈ C, the domain of individuals in w is of finite size,
then for every v ∈ {i, s}, lcv(C, E,a b) ≠ #.

Proof. (i) is just Lemma 1 (C.12). (ii) follows from Lemma 3 (C.14) and Lemma
4 (C.15) together with the following observation: if the domain of individuals
in w, Dw , is finite, then for any intensional type τ there are only finitely
many functions of type τ with Ds = {w}.37 It follows that trv({w}, E, a b)

37 The proof is by induction on primitive types relative to w. Clearly, Dw and {0,1} are finite.
Furthermore, if E is finite, so are Dw→ E and {0,1}→ E.
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is finite. By Lemma 3 (C.14), we construct lcv({w}, E, a b) for every w ∈ C.
By Lemma 4 (C.15), this makes it possible to construct lcv(C, E,a b).

We now define our reconstruction of local satisfaction, in case local
contexts exist, but also in the more general case in which they need not exist.

C.17 Definition of Local Satisfaction — Special Case (when local contexts
exist) Let C ⊆ W be a context set.

i. For every v ∈ {i, s}, for all expressions dd′, a, b, if lcv(C,dd′, a b) ≠
#, Satv(C,dd′, a b) just in case lcv(C,dd′, a b) ≤ d.

ii. For every v ∈ {i, s}, for every formula F , if for all expressions a,
b, ee′ such that F = aee′ b, lcv(C,dd′, a b) ≠ #, Satv(C, F) just in
case for every expression ee′, for all strings a, b, if F = aee′ b, then
Satv(C, ee′, a b).

C.18 Definition of Local Satisfaction — General Case (local contexts need
not exist) Let C ⊆ W be a context set.

i. For every v ∈ {i, s}, for all expressions dd′, a, b, Sat′v(C,dd′, a b)
iff for some x ∈ trv(C,dd′, a b), for every x′, if [x′ ≤ x and x′ ∈
trv(C,dd′, a b)], then C îc′→x′ c′ ≤ d.

ii. For every v ∈ {i, s}, for every formula F , Sat′v(C, F) just in case for ev-
ery expression ee′, for all strings a, b if F = aee′ b, Sat′v(C, ee′, a b).

C.19 Lemma 5: when local contexts exist, the definitions in C.18 and C.17
are equivalent For every v ∈ i, s, if lcv(C,dd′, a b) ≠ #, Satv(C,dd′, a b)
iff Sat′v(C,dd′, a b).

Proof. First, if Satv(C,dd′, a b), then by taking x = lsv(C,dd′, a b), we
can find an x ∈ trv(C,dd′, a b) such that, for every x′, if [x′ ≤ x and x′ ∈
trv(C,dd′, a b)], then C îc′→x′ c′ ≤ d.

Second, if Sat′v(C,dd′, a b), there is some x such that, for every x′, if
[x′ ≤ x and x′ ∈ trv(C,dd′, a b)], then C îc′→x′ c′ ≤ d.

Since lcv(C,dd′, a b) is the bottom element of trv(C,dd′, a b),
lcv(C,dd′, a b) ≤ x, and therefore C îc′→lc

v
(C,dd′,a b) c′ ≤ d. By the def-

initions of trv(C,dd′, a b) and lcv(C,dd′, a b), it must be the case that
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lcv(C,dd′, a b) ≤ C. Therefore, lcv(C,dd′, a b) ≤ d. In other words,
Satv(C,dd′, a b).

Before we go further, it is worth pointing out that the incremental version
of local satisfaction systematically predicts presuppositions that are at least
as strong as those predicted by the symmetric version (the same conclusion
holds of the incremental vs. symmetric version of all the theories under
study in this appendix).

C.20 Incremental Satisfaction predicts stronger presuppositions than
Symmetric Satisfaction For any context set C, for all expressions dd′ and
for all strings a, b,

i. tr i(C,dd′, a b) ⊆ trs(C,dd′, a b)

Furthermore, if lcs(C,d,a b) ≠ # and lci(C,d,a b) ≠ #,

ii. lcs(C,d,a b) ≤ lci(C,d,a b)

iii. if Sati(C,d,a b), then Sats(C,d,a b).

Proof. Immediate.

We now turn to a comparison between Incremental Satisfaction, Incre-
mental Transparency and Dynamic Semantics

C.21 Theorem. Equivalence with Transparency Let C ⊆ W be a context
set. Then:

i. For any v ∈ {i, s}, for every formula that has the form add′ b,
Sat′v(C,dd′, a b) iff Transpv(C,dd′, a b).

ii. Therefore, for any v ∈ {i, s}, for every formula F , Sat′v(C, F) iff
Transpv(C, F).

Proof of (i). We start with the incremental version.

⇒ Suppose that
Sat′i(C,dd′, a b). Then for some x ∈ tr i(C,dd′, a b),

C îc′→x c′ ≤ d
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For every expression d′′ of the same type as d, for every good final b′,

C îc′→x a(dand d′′) b′⇐⇒ a (dand d′′)c′ b′

C îc′→x a (dand d′′)c′ b′⇐⇒ a d′′c′ b′

C îc′→x a d′′c′ b′⇐⇒ ad′′ b
Hence,

C î a(dand d′′) b′⇐⇒ ad′′ b′

⇐ Suppose that Transpi(C,dd′, a b). Clearly, d ∈ tr i(C,dd′, a b). Further-
more, for every x′,

[x′ ∈ tr i(C,dd′, a b) and x′ ≤ d] =⇒ C îc′→x′ c′ ≤ d

So Sat′i(C,dd′, a b).

The argument is similar for the symmetric version of Sat and Transp.

Proof of (ii). Immediate given (i).

C.22 Theorem. Equivalence with Standard Dynamic Semantics Let C ⊆
W be a context set and F be a formula which satisfies Non-Triviality and
Constancy. Then:

i. for all expressions a, b, dd′, if F = add′ b, lci(C,dd′, a b) ≠ #.
Furthermore,

ii. Sati(C, F) iff Sat′i(C, F) iff C[F] ≠ #.

Proof of (i). Immediate from C.16(ii) and the fact that Constancy implies that
for each w ∈ C , the set of individuals in w is of finite size.

Proof of (ii). The first equivalence follows from (i) and the Lemma in C.19.
The second equivalence follows from (i), C.9(iii) and C.21(ii).

Finally, we consider an example in which local contexts do not exist, which
makes it necessary to resort to the alternative definition of satisfaction, Sat′.

C.23 Infinitely Many Consider the formula F = (Infinitely-manyP.QQ′).
We assume that there are infinitely many elements in Pw .
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i. QQ′ has no local context in the context set {w}.

ii. Sat′i(C, F) (or equivalently Transpi(C, F)) need not entail that C î
(EveryP.Q).

Proof of (i). First, we note that if x is a transparent value for c′, x(w) must
itself contain infinitely many elements. For if not, (Infinitely-manyP. Pc

′
)

would be false atw but (Infinitely-manyP. P) would be true — and c′ wouldn’t
be transparent. Second, we show that for any transparent value x for c′,
we can find a ‘smaller’ value x′ which is also transparent. Since x(w) must
contain infinitely many elements, we just take one arbitrary element out of
x(w), obtaining an x′(w) distinct from x(w) with x′(w) ≤ x(w) (and also
x ≤ x′). And it is clear that x′, which itself contains infinitely many elements,
is transparent (because the truth of the statement infinitely many Ps are Q is
insensitive to whatever happens to any given finite set of elements). Since x
was arbitrary, we have shown that the set of transparent context denotations
simply does not have a bottom element.

Proof of (ii). Assume that in w, Q holds true of all P -individuals except
a (non-zero) finite number. We have that for any predicative D, w î
(Infinitely-manyP. (QandD)) ⇐⇒ (Infinitely-manyP.D), so Transpi(C, F),
and therefore (by C.21) Sati(C, F). Still, w 6î (EveryP.Q ).

C.24 Examples of Symmetric Local Contexts38 [listed in (61) in the text;
since predicate negation is not part of our ‘official’ fragment, we tacitly adopt
an extended fragment in this paragraph]

38 As noted in a different context by (Rothschild 2008c) and (Beaver 2008), as well as in an
earlier version of the present paper (Feb. 8, 2008), the symmetric version of our analysis
(as well as of the Transparency theory) will run into problems when several presupposition
triggers occur in the same sentence. Thus in the example in (i), it is predicted that no
presupposition failure obtains, despite the fact that both pp′ and qq′ trigger a failure on
their own. (Beaver discusses the case in which q = p, which leads to the same result.)

(i) a. (pp′ and qq′)

b. C = {w1,w2}, w1 6î p, w2 6î p and w2 î q

To address this issue, we can define for each string s a string s∗ obtained by delet-
ing all underlined material. We then define a slightly modified notion of transparency:
tr∗s(C,dd′, a b) = trs(C,dd′, a∗ b∗), and we keep the rest of the theory, replacing trs with
tr∗s . In (i), the effect is to compute the local context of pp′ relative to ( pp′c′ and q′), and

to compute the local context of qq′ relative to (p′ and qq′c′ ). In effect, we thus restrict the
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a. lcs(C, qq′, ( and p)) = lci(C, qq′, (p and )) = C ∧ p

In other words, the symmetric local context of qq′ in (qq′ and p), as well as
in (p and qq′), is C ∧ p.

Proof. In the incremental case, syntactic considerations guarantee that a
formula of the form p and d′ b′, where p and d′ are constituents, must
end with a right parenthesis, so that b′ = ). Hence c′ is symmetrically
transparent in ( qq′c′ and p) just in case it is incrementally transparent in

(p and qq′c′ )— whence the result.

b. lcs(C, qq′, ( or p)) = lci(C, qq′, (p or )) = C ∧ (not p)

Proof. Same as in (a).

c. lcs(C, qq′, (if . p)) = lci(C, qq′, (if (not p). (not ))) = C ∧ (not p)

In other words, the symmetric local context of qq′ in (if qq′. p), as well as in
(if (not p). (not qq′)), is C ∧ (not p)

Proof. S is symmetrically transparent for c′ in (if qq′c′ . p) just in case

i. for every propositional constituent d′, C îc′→S (if d′c′ . p)⇐⇒ (if d′. p).

S is incrementally transparent for c′ in (if (not p). (not qq′c′ )) just in case

ii. for every propositional constituent d′, for every good final b′,
C îc′→S

[
(if (not p). (not d′c′ b′

]
⇐⇒

[
(if (not p). (not d′ b′

]
.

With a bit of syntactic reasoning (based on the formal fragment in (10), it
can be argued successively that d′ must be immediately followed by

[
)
]
, and

that (not d′c′ ) must itself by followed by
[
)
]
, so that the condition in (ii) is in

effect that:

ii′. for every propositional constituent d′, C îc′→S
[
(if (not p). (not d′c′ ))

]
⇐⇒[

(if (not p). (not d′))
]
.

informational basis of context computation to the ‘assertive’ component of the rest of the
sentence.
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But since we have treated conditionals as material implications, (i) is equiv-
alent to (ii′) (just take the contraposition of each side of the biconditional).
It follows that the transparent values of c′ are the same in both cases, and
that the corresponding local contexts are also identical. The desired result
follows once one observes (as was done in the general case in fn. 16) that
lci(C, qq′, (if (not p) . (not ))) = C ∧ (not p).

d. lcs(C, PP ′, (Every (not ).Q)) = lci(C, PP ′, (Every (notQ). ) =
(not Q)C

In other words, the symmetric local context of PP ′ in (Every (not PP ′).Q),
as well as in (Every (notQ). PP ′)), is (not Q)C (i.e. the property of being a
not-Q individual restricted to C).

Proof. S is symmetrically transparent for c′ in (Every (not PP ′c′ ).Q) just in
case

i. for every predicative constituent d′, C îc′→S (Every (not PP ′c′ ).Q) ⇐⇒
(Every (not PP ′).Q).

By the equivalence (for all F ) between (Every F.Q) and (Every (notQ). (not F)),
taking F = (not PP ′), (i) is equivalent to

ii. for every predicative constituent d′, C îc′→S (Every (notQ). PP ′c′ ) ⇐⇒
(Every (notQ). PP ′).

But (ii) is the condition that must be met by S if c′ is to be incrementally
transparent in (Every (notQ). PP ′c′ ). By the computations of Section 2.3.2 (in
(35)), the desired result follows.

e. lcs(C, PP ′, (No (not ).Q)) = QC

In other words, the symmetric local context of PP ′ in (No (not PP ′).Q) is QC

(i.e. the property of being a Q-individual restricted to C).

Proof. The proof is similar to that in (d), using this time the observation that
(No F.Q) is equivalent to (No Q.F) and taking F = (not PP ′).
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D Adding Variable-binding Operators

The problem we encountered with belief operators in Section 3.1.2 re-emerges
in languages which have variable-binding operators (by contrast, the system
we discussed in the rest of this article contained quantifiers, but no variables
at all). We will henceforth assume that we have a fully extensional language
which includes individual and world variables, and we will sketch a possible
extension of the analysis by discussing an example.

In Every student believes that he is starting to make progress, we want the
local context of the embedded predicate to be dependent on a variable (x1)
bound by every student, and on a world variable (w2) bound by the attitude
operator — as well as by the free world variable (w0) which denotes the world
of utterance:39

(91) [every student-w0]λx1[w0 [x1 believes
λw2[w2 [he1 [ is starting to make progressc′ ]]]]]

Following Heim 1991, we take student to have a world argument, and thus
we write student-w0 for the predicate true of the students at w0. In (91),
believes takes three arguments: a world variable w0, an individual variable
x1, and a propositional argument which has the form of a λ-expression with
abstraction of a world variable (note that the world argument of a verb phrase
appears as its last (i.e. highest) argument, right above the canonical position
of the subject).

In such a framework, the meaning of any expression can be seen as a
function from assignment functions to objects of a specified type; in essence,
assignment functions play a role analogous to that of possible worlds in the
variable-free system discussed in the main text. A simple way to allow c′ to
depend on all the necessary variables is to make its value dependent on an
entire assignment function as well.40 We assume that the world of utterance
is denoted by the distinguished variable w0, and that the context set is
identified to a set of assignment functions. Thus the context set encodes
what is taken for granted by the speech act participants about the values
of variables, including the distinguished variable w0 which denotes [what
they take to be] the world of utterance. In this modified framework, local

39 See Cresswell (1990) and Heim (1991) for arguments that the full power of such a language is
semantically and syntactically justified; time variables, or for that matter variables of any
type, could easily be added as well.

40 It is interesting to note that exactly the same technical solution was proposed to handle
implicit domain restrictions on quantifiers by Heim (1991).
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contexts are functions from assignment functions to objects of type 〈s, t〉,
or 〈s, 〈e, t〉〉, as the case may be (in the earlier system, they were functions
from possible worlds to objects of type 〈s, t〉 or 〈s, 〈e, t〉〉). All we need to
apply our analysis to this case is an ordering on the possible values of c′; we
extend our earlier definition point-wise:

(92) If x and x′ are function from assignment functions to objects of type
τ , where τ ‘ends in t,’ then x ≤ x′ iff for every assignment function s,
x(s) ≤ x′(s).

The rest of the analysis is as before. When we apply the new definition to
(91), the local context of the embedded predicate is defined as the strongest
x which satisfies (93) (for clarity, we continue to separate the value assigned
to c′ from the value of other contextual parameters — in this case the assign-
ment function s; we also omit some brackets from the Logical Forms):

(93) For every predicative expression d′, for every s in C,
([every student-w0]λx1 w0 x1 believes λw2[w2 he1 d′c′ ])s,c′→x =
([every student-w0]λx1 w0 x1 believes λw2[w2 he1 d′])s,c′→x

We will now show that the value x of the local context is the function from
assignment functions to objects of type 〈s, 〈e, t〉〉 defined by (94):

(94) For every assignment function s′, x(s′)=λwsλdc1 iff for some s in
C, s′≈x1,w2 s and w = s′(w2) and d = s′(x1) and d is a student in
s′(w0)(=s(w0)) and w ∈ Doxd(s′(w0)), where s′≈x1,w2s indicates that
s′ is identical to s except possibly for the values it assigns to x1 and
w2.

The argument is in two steps.
First, we check that the condition in (93) is satisfied by x as defined in

(94). By construction, x(s′) denotes a property that holds true of s′(x1) for
any assignment function s′ that could matter for the evaluation of the truth
conditions of the leftmost formula in (93), hence the result.

Second, we check that any x′ that satisfies the condition in (93) is entailed
by x. In other words, if for some (appropriate) s′, w and d, x(s′)(w)(d)=1
but x′(s′)(w)(d)=0, x′ then fails to satisfy the condition in (93). So let us
suppose that x′ satisfies (95), and let us show that x′ fails to satisfy (93).

(95) For some assignment function s′, for some world w, for some indi-
vidual d, for some s in C, s′≈x1,w2 s and w = s′(w2) and d = s′(x1)
and d is a student in s′(w0)(= s(w0)) and w ∈ Doxd(s′(w0)) and
x′(s′)(w)(d)=0.
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We take d′ to be a tautologous property. This immediately ensures that the
right-hand side of (93) is satisfied. Still, the left-hand side isn’t satisfied:
s′ suffices to refute it, because it is an x1,w2-variant of s which assigns to
x1 an individual d who is a student in s′(w0) and to w2 a world w which
is compatible with d’s beliefs in s′(w0), and yet d fails to have property
( d′c′ )s′,c′→x′ in w because c′s

′,c′→x′=x′(s′) is false of d in w.
To complete the discussion of our example, we check that we obtain

the desired result when we add the requirement that x should entail the
presupposition of the embedded predicate in (91). If we abbreviate has started
to make progress as pp′, with a presupposition p (= didn’t make progress
before), the requirement is thus that x should entail p; given our point-wise
definition of entailment, this means that:

(96) for every assignment function s′, x(s′) ≤ p(s′)

x(s′) is itself a function of type 〈s, 〈e, t〉〉, whose value is given in (94); as for
p(s′), it is a constant function of type 〈s, 〈e, t〉〉. So the condition that must
be fulfilled is that:

(97) for every assignment function s′, for every world w, for every individ-
ual d, x(s′)(w)(d) ≤ p(s′)(w)(d)

The condition is thus that whenever x(s′)(w)(d) = 1, p(s′)(w)(d) = 1. It is
satisfied just in case:

(98) for every s in C , for every d that is a student in s(w0), for every world
w ∈ Doxd(s(w0)), p(s)(w)(d) = 1

(Since p is a constant function over the domain of assignment func-
tions, this can be paraphrased more intuitively as: if d is a student in
a world w′ compatible with what the speech act participants take for
granted, if w is a world compatible with what d believes in w′, then d
satisfies p in w.)

It is clear that (98) entails (97), because x′(s′)(w)(d) can only take the
value 1 if for some s ∈ C, s′≈x1,w2 s and d is a student in s(w0) and w ∈
Doxd(s(w0)). Conversely, (97) entails (98): for every s ∈ C, for every d that
is a student in s(w0) and for every world w ∈ Doxd(s(w0)), consider s′ =
s[x1→ d][w2→ w]. It is clear that x(s′)(w)(d) = 1, hence p(s′)(w)(d) = 1
and thus p(s)(w)(d) = 1— which proves (98).
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E Universal Inferences from Non-Conservative Quantifiers

In our discussion of every and no, the argument crucially relied on the
property of conservativity. What about non-conservative operators, such as
only? We predict that they will exhibit a very different pattern of projection.
Consider the sentence in (99) (with focus on bad):

(99) In my class, only badF students have stopped complaining.

My impression is that (99) gives rise to an inference that all students in my
class used to complain (some speakers believe that a slightly weaker inference
is obtained). Let us see how this result can be derived. For simplicity, we
abstract away from the presupposition triggered by only (treating it as part of
the assertion), and we posit the truth conditions in (100), which are motivated
by the non-presuppositional example in (101).

(100) (only badF students . Q) is true at a world w just in case in w: (a) at
least one bad student satisfies Q, and (b) every student that satisfies Q
is a bad student.

(101) a. Only badF students skipped class yesterday.
b. (a) is true if and only if at least one bad student skipped class

yesterday, and all students who skipped class yesterday are bad
students.

We make the Assumption in (102) and derive the result in (103).

(102) Assumption: throughout C, the extension of bad student is non-empty.

(103) The local context of Q in (only badF students . Q) is studentC , the
property of being a student restricted to the context set C (thus
studentC = λwλx(w ∈ C and x is a student in w)).

It follows from (103) that (99) triggers a presupposition that every student
(in my class) used to complain, since the property studentC should entail
the presupposition complain. We prove (103) in two steps. First, it is clear
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that if c′ denotes studentC , the desired equivalence will hold: for any d′ of
predicative type,

(104) C îc′→Cstudent (only badF students . d′c′ )⇐⇒ (only badF students . d′)

Second, let us assume that c′ denotes a property x and that for some world
w of C and for some individual i, student(w)(i) = 1 but x(w)(i) = 0.
We wish to show that for some d′, C 6îc′→x (only badF students . d′c′ ) ⇐⇒
(only badF students . d′); this will prove that if the denotation x of c′ is not
entailed by studentC , c′ is not a transparent restriction — in other words,
studentC entails every transparent restriction for d′.

We argue by cases: first, we consider the case in which i is bad student
(Case 1); second, we consider the case in which i is a student who is not a
bad student (Case 2). In each case, we find a value of d′ for which C 6îc′→x
(only badF students . d′c′ )⇐⇒ (only badF students . d′).

Case 1 i is a bad student. We take d(w) = {i}. It is clear that w îc′→x
(only badF students . d′), because i is a bad student that satisfies d′,
and every student that satisfies d′ is identical to i, and is thus a bad
student. However, w 6îc′→x (only badF students . d′c′ ), because the
extension of d′c′ is empty. So w 6îc′→x (only badF students . d′c′ )⇐⇒
(only badF students . d′).

Case 2 i is a student who is not a bad student. By the Assumption in (102),
there exists at least one individual who is a bad student.

Case 2a x(w) includes at least one individual i′ who is a bad student. We
take d′(w) = {i, i′}— and thus d’c′ (w) = {i′} (since by assumption
x(w)(i) = 0). Clearly, w 6îc′→x (only badF students . d′), because i
satisfies d′ but i is not a bad student. Still,w îc′→x (only badF students
. d′c′ ): i′ is a bad student, and satisfies d′c′ ; and since d’c′ (w) =
{i′}, every element that satisfies d′c′ is a bad student. So w 6îc′→x
(only badF students . d′c′ )⇐⇒ (only badF students . d′).

Case 2b x(w) includes no individual who is a bad student. We take d′ =
bad student. Clearly, w îc′→x (only badF students . d′), since by the
Assumption in (102) there exists at least one individual who is a bad
student. Still, w 6îc′→x (only badF students . d′c′ ) because by assump-
tion x(w) includes no individual who is a bad student. Thus in this
case toow 6îc′→x (only badF students . d′c′ )⇐⇒ (only badF students . d′).
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We make similar predictions for the sentence Only studentsF have stopped
complaining, with the additional complexity that the alternatives to students
must be made clear, and the domain restriction must be made explicit.

(105) In my Department, only studentsF have stopped complaining.

If the Department is composed of students and professors, we predict
a presupposition that all students and all professors used to complain. We
leave a more precise assessment of this prediction for future research.
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