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Abstract In footnote 13 on p. 85f. of his dissertation, Mats Rooth (1985)

addresses certain peculiarities of his treatment of only as a quantifier over

propositions. The current note elaborates on that footnote to conclude that

the lack of adequacy of this approach to quantification is more severe than

previously thought. Section 1 presents a gap in the alternative[s] semantics

treatment of only. In Section 2 an attempt is made to close it by way of

meaning postulates to eliminate ‘degenerate’ models (Rooth’s term) in which

extensions do not vary enough across Logical Space. In view of the lack of

feasibility and systematicity of that approach, Section 3 explores a more

principled, yet ultimately futile, strategy for determining ‘realistic’ models

(Rooth’s term) that reflect the extensional variation offered by Model Space

as a whole. Section 4 points out the limitations any such repair encounters

when it comes to sentences with non-contingent at-issue contents. Section 5

briefly discusses a variant of the interpretation of only as a quantifier over

propositional alternatives and how it fares with respect to the problems

addressed in the previous sections.
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Introduction

One of the principal assets to alternative semantics, originating with Rooth
1985, is its straightforward account of the truth-conditional effects of certain
focus-sensitive elements like only, which does without any (possibly problem-
atic) movement operations.1 At the same time it has long been known that
the somewhat underspecified analyses of alternative semantics do not always
get the truth conditions quite right. The present note scrutinises the lacunae
in the alternative treatment of only. More specifically, it addresses possible
enhancements to alternative semantics by eliminating certain unintended
models so as to predict more specific and adequate truth conditions for
sentences with only. Three objections will be raised against such attempts:

• In Section 2, it will be argued that the standard technique of employing
meaning postulates to make up for the lack of specificity in the truth
conditions does not appear to be feasible.

• In Section 3, a more principled approach to adequate truth conditions
in terms of a model-theoretic reflection technique, will be explored
but ultimately dismissed since it turns out to be not viable either.

• In Section 4, a specific counter-example will be presented to show that
the inadequacy of the truth conditions is sometimes beyond repair.

For expository reasons, these arguments will only be directed at the simple,
uniform account of only as a propositional quantifier developed in Rooth
1985: ch. II, where in particular, quantification over alternatives to individual
referents is simulated by quantification over alternative propositions. Section
5 will turn to an example of a more flexible (and more popular) approach to
alternative semantics and show that the latter leads to the same problems,
albeit only in a sub-class of examples where only focus-associates with a
proper part of its argument and quantifies over VP-denotations instead of
propositions; as it turns out, the inadequacies of propositional quantifica-
tion carry over to quantifiers over properties. The final section then briefly
discusses how these results may affect other analyses and theories beyond
alternative treatments of only as a quantifier. Before all this, Section 1 will
illustrate the core problem by going through a few pertinent examples.

1 See, e.g., Rooth 1985: 33ff.; Stechow 1991: 813f.; Kratzer 1991: 827f. for arguments adduced
against movement accounts of (associated) focus, and Wagner 2006, 2012 and Erlewine &
Kotek 2016 for evidence for a hybrid account of movement and alternative semantics.
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1 Quantification over propositions vs. quantification over individuals

According to one version of alternative semantics, focus-sensitive operators
like only quantify over propositions rather than individuals.2 As a case in
point, a sentence like:

(1) Only Mary is asleep.

comes out as expressing:3

(2) (∀p)[[∨p ∧ (∃x) p = ∧S(x)]→ p = ∧S(m)]

rather than the more straightforward predicate logic formalisation:

(3) (∀x)[S(x)→ x =m]

Models abound in which (2) comes out true where it should not. Thus, e.g., if
John and Mary, while being distinct, happen to be asleep in exactly the same
worlds (of a model) and are also the only ones who are asleep in the actual
world (of that model), then (2) is true in the actual world (of that model)
because the proposition denoted by ‘∧S(m)’ — that Mary is asleep — is the
same proposition as the one expressed by ‘∧S(j)’ — that John is asleep — and
it is the only proposition of the form ‘∧S(x)’ that is true in the actual world (of
the model).4 Intuitively, however, (1) should not count as true in that world (of
the model) because the extension of S — the constant expressing the property

2 Cf. Rooth 1985: ch. III, where a cross-categorial approach to focus-sensitive particles is
developed. Other approaches to alternative quantification — like the one in Rooth 1985:
ch. II, which gets the truth conditions in constellations like (1) right — are plagued by the
same problems when it comes to slightly more involved constellations but will not be
addressed before Section 5. Certain aspects of both approaches, such as context dependence,
domain restrictions, compositionality, and multiple or wide foci, will be neglected in the
following, since they are irrelevant for the comparison with ordinary quantification; only the
conventional implicature triggered by only will make a short appearance in Section 4.

3 Apart from the self-explanatory (and eliminable) terms for n-tuples of individuals, the
intensional type logic formulae used here are largely in line with Montague’s notation
(Montague 1970). In particular, ‘∧’ abstracts over the (implicit) world parameter, and ‘∨’
indicates application to the world of evaluation; thus if ϕ is a truth-valuable formula, ‘∧ϕ’
stands for the proposition expressed by ϕ; and if π stands for a proposition, the formula
‘∨π ’ says that π is true (of the world at stake).

4 It is understood that the individual constants corresponding to proper names (like m and
j, which are supposed to translate Mary and John, respectively) are rigid designators in
the sense of Kripke 1972; this assumption is standardly being taken care of by meaning
postulates like ‘(∃x) � m = x’.
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of being asleep — contains two distinct individuals. And obviously (3) does
bring out this truth condition correctly.

More generally, as Rooth (1985) (p. 85f fn. 13) observed, given the standard
modeling of propositions as regions in Logical Space, this analysis requires
a certain abundance of possible worlds: (2) only comes out as equivalent to
(3) if (4) holds, i.e., if the proposition denoted by ‘∧S(m)’ differs from the
proposition denoted by ‘∧S(x)’ for any x other than Mary:

(4) (∀x)[x ≠ m→ ∧S(x) ≠ ∧S(m)]

Generalising (4) from (1) by abstracting from Mary, the equivalence of (2) and
(3) turns out to impose a certain degree of granularity on the propositions
expressed by simple predications:

(5) (∀x)(∀y)[x ≠ y → ∧S(x) ≠ ∧S(y)]

The possible worlds setting as such does not guarantee the truth of (5). In
particular, (5) does not hold in models in which the number n of individuals
by far exceeds the number m of worlds in that n > 2m: for some x and y the
propositions denoted by ‘∧S(x)’ and ‘∧S(y)’ would have to coincide, since
there are only 2m propositions to begin with. Similarly, if n > 2 and the
intension of S happens to be rigid, the propositions denoted by ‘∧S(x)’ and
‘∧S(y)’ coincide for at least two x and y in the (constant) extension of S. In
order to guarantee (4), then, such ‘degenerate’ models (Rooth 1985) would
have to be discarded by semantic theory. This could be achieved by way
of meaning postulates (or similar constraints) to the effect that the lexical
predicates must satisfy (5) in lieu of S.5 However, the above reasoning extends
way beyond the realm of lexical intransitives. Thus, e.g., in order for the
interpretations (b) of the sentences (a) under (6)–(9) to come out right, the
corresponding assumptions (c) turn out to be crucial:6

(6) a. John only met Mary.
b. (∀p)[[ ∨p ∧ (∃x) p = ∧M(j, x)]→ p = ∧M(j,m)]
c. (∀x1)(∀x2)(∀y1)(∀y2)[(x1, x2) ≠ (y1, y2)→

∧M(x1, x2) ≠ ∧M(y1, y2)]

(7) a. John only introduces Mary to Sue.

5 See Beaver & Clark 2008: 84 for an explicit suggestion along these lines.
6 To see this, as in the case of (1), variants of the (a)-sentences with different names must be

considered.
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b. (∀p)[[ ∨p ∧ (∃x) p = ∧I(j, x, s)] ∧ → p = ∧I(j,m,s)]
c. (∀x1)(∀x2)(∀x3)(∀y1)(∀y2)(∀y3)[(x1, x2, x3) ≠ (y1, y2, y3)

→ ∧I(x1, x2, x3) ≠ ∧I(y1, y2, y3)]

(8) a. Only Mary is both drunk and asleep.
b. (∀p)[[ ∨p ∧ (∃x) p = ∧[D(x)∧ S(x)]]→ p = ∧[D(m)∧ S(m)]]
c. (∀x)(∀y)[x ≠ y → ∧[D(x)∧ S(x)] ≠ ∧[D(y)∧ S(y)]]

(9) a. John only knows that Mary knows that Harry introduces Bill to
Sue.

b. (∀p)[[ ∨p ∧ (∃x) p = ∧K(j,∧K(x,∧ I(h,b, s)))]→
p = ∧K(j,∧K(m,∧ I(h,b, s)))]

c. (∀x1) . . . (∀x5)(∀y1) . . . (∀y5)[(x1, . . . , x5) ≠ (y1, . . . , y5)→
∧K(x1,∧K(x2,∧ I(x3, x4, x5))) ≠∧ K(y1,∧K(y2,∧ I(y3, y4, y5)))]

(6) and (7) illustrate that an adequate generalisation of (5) would have to
cover lexical verbs of higher valencies, like the binary and ternary predicates
M[eet] and I[ntroduce]. (8) and (9) indicate that the role of the predicate S in
(5) can be played by non-lexical (n-ary) predicates like:

(10) λx.[D(x)∧ S(x)]

(11) λx5.λx4.λx3.λx2.λx1.K(x1,∧K(x2,∧ I(x3, x4, x5)))

the general pattern being:7

(12) (∀ -→x)(∀ -→y)[ -→x ≠ -→y → [∧R
------------------------------------------------→{x}] ≠ [∧R

-----------------------------------------------------→{y}]]

where ‘ -→x ’ and ‘ -→y ’ range over n-tuples of individuals (for fixed but arbitrary
n).

2 Extensional Variation by Meaning Postulates

Closer inspection of the counter-examples to (5) reveals that there is some-
thing wrong with them for independent reasons: such ‘degenerate’ models
according to which Logical Space is severely limited, ought be done away with
anyway. What distinguishes such models from more ‘realistic’ (Rooth 1985
p. 85f fn. 13) contenders, is their austerity: rather than varying freely across
Logical Space, they restrict the range of possible extensions of S[leep] in that

7 The curly brackets, which indicate application of the extension of a property, are again part
of the intensional logic of Montague 1970, where they reflect a certain asymmetry between
non-logical constants (like S) and variables (like R).

8:5



Thomas Ede Zimmermann

it does not cover every set (of individuals). This defect could be remedied in
a natural way by demanding a maximal degree of extensional variation:

(13) (∀X)♦[S = X]

where ‘X’ ranges over arbitrary sets of individuals. It is readily seen that
(13) implies (5) (though not vice versa).8 In the case of M and I, too, it may
seem natural to derive the pertinent requirements (6c) and (7c) from some
more general principle of variation, analogous to (13). Arguably, however,
in these cases the variation is conceptually bounded. In particular, it would
seem that the extension of M needs to be irreflexive; for it does not make
(literal) sense for anyone to meet him- or herself. Similarly, one may want to
exclude from the possible extensions of I any triples the third components of
which coincide with either of the other two; for no one can introduce anyone
(or anything) to him- or herself — on either reading of that clause.9 Further,
possibly more clear-cut cases along these lines may be found in comparatives
and degree verbs like exceed. Given these considerations, it appears dubious
that (13) should be postulated for lexical predicates across the board. If
anything, the range of possible extensions needs to be determined predicate
by predicate. On top of (13) we may thus have:

(14) (∀R)[[¬(∃x)R(x,x)]→ ♦[M = R]]

(15) (∀S)[[¬(∃x)(∃y)[S(x,y,x)∨ S(x,y,y)]]→ ♦[I = S]]

where ‘R’ and ‘S’ respectively range over binary and ternary relations, and
so on, for any pertinent lexical predicate. However, this cannot be the whole
story. For conjoined possibility does not imply compossibility, and so while
both D[runk] and S may have an unlimited range, (5) and its D-variant do

8 If (13) holds, then for any individual x there is a world at which the extension of S is the
singleton {x}, thus excluding any individual y distinct from x and satisfying (5). On the
other hand if, e.g., the extension of S could be any singleton but nothing else, (5) would hold,
but (13) would not. (13) strengthens, and is in the spirit of the notion of, lexical freedom
as defined in Keenan 1987 (methinks), which implies that for any X, there is some lexical
predicate P satisfying ‘♦[P = X]’.

9 To the extent that time travel into the past is a coherent concept, it might seem that persons
could meet, be introduced to, or introduce others to, themselves. Arguably, however, such
scenarios involve multiple copies or representations of one person — and thus more than
one individual — rather than one person with more than one body. Similar things could be
said about encountering and acquainting representations of persons in mirrors or on TV. I
am indebted to Peter Smith for valuable discussion and sharing his native intuitions relating
to the meaning and use of to meet.
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not exclude models according to which they are contradictories, say, and
thus the extension of (10) is necessarily empty. To ensure (8c), the variation
postulates would thus have to cover the compound predicate in (10):

(16) (∀X) ♦[λx.[D(x)∧ S(x)] = X]

Similarly, for (9c), one would need:

(17) (∀T) ♦[[λx5.λx4.λx3.λx2.λx1. K(x1,∧K(x2,∧ I(x3, x4, x5)))] = T]

with ‘ T ’ ranging over five-place relations among individuals.
Apart from idiosyncratic limitations due to lexical meanings as in (14)–(16),

further restrictions on extensional variation ensue from interdependencies
of lexical meanings. Thus, e.g., while unlimited variation seems to be desir-
able for the intersection of logically independent predicates like D and S,
constraints would have to be imposed on the possible extensions when it
comes to Boolean combinations of, say, S and A[wake], K and B[elieve], etc.
In fact, the range of extensional variation of complex predicates seems to
be largely delimited by independent meaning postulates that the variation
principles would have to somehow take into account — and it is not clear how
this could be done in a systematic way.

3 Extensional variation by reflection principles

Formulating extensional variation postulates for ever more complex pre-
dicates appears neither feasible nor particularly insightful. Thus a more
principled way to proceed ought to be found; and, indeed, the examples of
the previous section suggest a direction the search may take. For the kind
of extensional variation that would secure the equivalence of (2) and (3) in a
natural way, cannot only be found across the worlds of Logical Space but also
across different models: even if the extension of a predicate does not vary
sufficiently within a given (‘degenerate’) model, its extensions in other models
(‘degenerate’ or not) may still display a maximal range of variation. Since
Model Space appears to have the richness we are after, we may want to look
for models that reflect this richness within their own (‘local’) Logical Spaces.
The current section is about this quest for models whose worlds represent all
of model space. We will start by taking a closer look at the variation of Model
Space on the extensions of the above examples and observe that this variation
as such does not guarantee the richness needed for analysing quantification
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over individuals in terms of quantification over properties: not all models are
rich enough. We will then define what it means for a model’s Logical Space to
be as rich as Model Space; such models will be said to reflect Model Space.
The section ends with an argument that such reflective models are unlikely
to exist.

Let us first see how the richness of Model Space affects the predicate S.
If D and W are arbitrary domains of individuals and possible worlds, the
following holds:

(18) For any X ⊆ D, there is a K0-model M = (D, W ,FM) and a worldw ∈ W
such that :

FM(S)(w) = X

where K0 is the class of all models of intensional type logic. While (13) grants
the predicate S a maximal amount of extensional variation across Logical
Space, (18) records that the same kind of variation can be observed across
Model Space. Yet the latter variation does not depend on (13): K0 also contains
models that do not satisfy (13) at every world — which means that they do
not satisfy (13) at any world.10

In a similar vein, the extensions of M and I vary wildly across Model
Space — even in the absence of meaning postulates (14) and (15):

(19) For any R ⊆ D2 there is a K0-model M = (D,W, FM) and a world
w ∈ W such that :

FM(M)(w) = R.
For any S ⊆ D3 there is a K0-model M = (D,W, FM) and a world
w ∈ W such that :

FM(I)(w) = S.

As a consequence, the variation noted in (19) abides if Model Space is restric-
ted by irreflexivity postulates for M and I:

(20) a. ¬(∃x)M(x,x)
b. ¬(∃x)(∃y)[I(x,y,x)∨ I(x,y,y)]

In other words, if K1 is the class of models satisfying (20), then (21) holds:

10 This is so because (13) does not make implicit reference to a world of evaluation, i.e., the
formula is modally closed in the sense of Gallin 1975: 14.
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(21) a. For any irreflexive R ⊆ D2 there is a K1-model M = (D,W, FM)
and a world w ∈ W such that :

FM(M)(w) = R.
b. For any irreflexive3 S ⊆ D3 there is a K1-model M = (D,W, FM)

and a world w ∈ W such that :
FM(I)(w) = S.

where irreflexivity3 is the property attributed to (the extension of) I in (20b).
Moreover, it is readily shown (not here, though) that the unlimited variation
does not stop at compound predicates like (10) and (11), whose extensions
vary freely across Model Space, independently of any trans-world variation
principles like (16) and (17).

It is important to realise that cross-model variation cannot make up
for a lack of cross-world variation.11 Yet it is the latter that leads to a lack
of intensions in general and propositions in particular, which again may
have dramatic consequences such as the non-equivalence of (2) and (3).
Since propositions, and intensions in general, are constructed by abstracting
from worlds rather than models, the varying extensions of the latter are
inaccessible to them. However, one may still hope that some, ‘realistic’ models
would capture enough cross-model variation within their Logical Spaces. More
concretely, given a class K of models, a model M∗ may be said to reflect K
in that for any M ∈K and any M-world w there is an M∗-world w∗ in which
the same (type-logical) sentences are true:

(22) {ϕ|M îw ϕ} = {ϕ
∣∣ M∗ îw∗ ϕ}12

In particular, a model that reflects a class of models across which the exten-
sion of a (definable) predicate varies ad libitum, makes any combination of
attributions of that predicate true of at least one of its worlds. Hence, e.g.,
any set Σ of sentences of the form ‘S(n)’, where ‘n’ is an individual constant,
will have to be true at some world wΣ. And if pertinent postulates guaran-
tee the distinctness of sufficiently many constants, it would seem that the
equivalence of (2) and (3) ought to emerge.

It is therefore natural to look for Rooth’s ‘realistic’ models among the
ones that reflect the class K ∗ of models satisfying all pertinent meaning
postulates, including irreflexivity assumptions like (20) but excluding the

11 See also Zimmermann 2011: 798f. for this point.
12 ‘îw ’ relates (type-logical) models M to the sentences (closed, truth-valuable formulae) that

are true at world w (in M’s Logical Space).
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variation principles (13)–(17); after all, the intended effect of the latter shows
in the variation across K ∗ and should thus be reflected in any M∗ satisfying
(22). Alas, this search strategy is futile. To see this, one may consider a
random contingency:

(23) Mary is asleep.

Clearly, K0 contains models M0 and M1 according to which (23) expresses a
contradiction and a possibility, respectively:

(24) a. M0 6îw S(m), for any M0-world w;
b. M1 îw′ S(m), for some M1-world w′.

With the help of the unrestricted possibility operator ‘♦’, (24) may be ex-
pressed as a statement about arbitrary M0- and M1-worlds w and w′:13

(25) a. M0 îw ¬♦S(m)
b. M1 îw′ ♦S(m)

In the (assumed) absence of any lexical postulates restricting the extensional
range of the constants ‘S’ and ‘m’, K ∗, too, ought to contain models M0

and M1 satisfying (24) and (25). Hence a ‘realistic’ model M∗ that reflects
K ∗ would have to contain worlds w0 and w1 that reflect arbitrary M0- and
M1-worlds w and w′:

(26) a. M∗ îw0 ¬♦S(m)
b. M∗ 6îw1 ♦S(m)

But the formulae in (26) are modally closed and so the truth of neither
depends on the particular choice of worlds w0 and w1; hence (27) would have
to hold for all w∗ in M∗’s Logical Space:

(27) M∗ îw∗ [[¬♦S(m)]∧♦S(m)]

. . . which cannot be.14 So the strategy of narrowing down the class of all
models to the more realistic ones in one fell swoop, leads to a contradiction.

13 Again, the two formulae under scrutiny are modally closed. Without loss of generality, one
may actually assume that M0 and M1 share their Logical Space and hence that w = w′; this
is so because Model Space is closed under arbitrary isomorphisms.

14 The situation is vaguely reminiscent of modal logic: in the canonical model of the logic
of universal accessibility (S5), accessibility is an equivalence relation but not universal; cf.
Hughes & Cresswell 1996: 118.
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One may try and escape this conclusion by excluding modal formulae
like the ones in (25) from the reflection requirement (22). Again, it is not
obvious how this could be done in a sensible way. In particular, the above
reasoning does not depend on the fact that the formulae under scrutiny
are modally closed; a conjunction of either with some contingent sentence
would have done just as well. Moreover, while it is crucial that the formulae
involve intensionality, i.e., abstraction from particular worlds, restricting (22)
to purely extensional ϕ would make the reflection property unattractively
weak. Thus, e.g., in order for (9a) and its focus variants to come out right,
a ‘realistic’ model ought to reflect the extensional range of the property in
(11) and thus make arbitrary combinations of attribution of it true, as long as
they obey the relevant postulates (like the veridicality of K). However, these
attributions are not extensional in that they involve the propositional attitude
K[nowledge].

4 Limits of propositional quantification

Since it does not seem to be possible to formulate general principles of ex-
tensional variation that would us allow to derive them, the relevant instances
of (12) — here repeated as (28) — would have to be assumed as meaning pos-
tulates in their own right:

(28) (∀ -→x)(∀ -→y)[ -→x 6= -→y → [∧R{ -→x}] 6= [∧R{ -→y}]] [= (12)]

The problem is to define these instances. To begin with, (28) cannot be
assumed for arbitrary (n-place) relations R; for its universal closure (29) turns
out to be inconsistent:

(29) (∀R)(∀ -→x)(∀ -→y)[ -→x 6= -→y → [∧R{ -→x}] 6= [∧R{ -→y}]]

Among others, certain trivial properties such as self-identity, or being ident-
ical with some fixed n-tuple, contradict (29). Hence (29) ought to be suitably
relativised by some (2nd order) property ℘, if only for consistence:

(30) (∀R)[℘(R)→ (∀ -→x)(∀ -→y)[ -→x 6= -→y → ∧R{ -→x} 6= ∧R{ -→y}]]

It is not clear how ℘ should be specified so as to imply all relevant instances
of (28), including (5) and (6c)–(9c). In particular, filtering out those R that
contradict (28) will not do: (28) is satisfied by precisely the relations that
never conflate the propositions that two distinct n-tuples stand in them.
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Hence in (30), ℘ cannot be the property ℘∗ of being consistent with (28): given
any relation R, either ℘∗(R) holds or its negation does; and R is inconsistent
with (28) precisely in the latter case. So the properties that are consistent
with (28) are the ones that satisfy (28), which means that equating ℘ with ℘∗

would turn (30) into the tautology that any R that satisfies (28), satisfies (28).
The problem, then, is to find a property ℘ shared by relations like S, L, I, (10),
and (11) so that (28) would make sure that they also have ℘∗.

One may thus ask what the relations mentioned have in common. For one
thing, they are all definable in terms of the lexical predicates featuring in
indirect interpretation.15 However, ℘ must not be identified with definability
in S, L, I, K, etc.; for not all definable relations R can be assumed to satisfy
(28): as already indicated, at least some of them, like self-identity (which is
definable in these constants, even without them), should be excluded for
logical reasons.16

In order to define a suitable restriction ℘, one may try to characterise
those relations that are definable from the logical representations of sen-
tences like (1) and (6a)–(9a). In principle, this could be done in terms of an
indirect interpretation algorithm. Yet again, this method of defining ℘ would
overshoot unless at least tautologies and contradictions are exempted from
it. In fact, Mats Rooth (1985 p. 85 fn. 13) already observed that the strategy of
mimicking individual by propositional quantification reaches its limits when
it comes to rigid intensions:17

(31) Only three is an odd number.

(31) is clearly false, and so is a straightforward predicate logic formalisation
of it:

(32) (∀x)[O(x)→ x = 3]

However, (31) comes out true on an analysis of only as a quantifier over
propositions:

(33) (∀p)[[∨p ∧ (∃x)p = ∧O(x)]→ p = ∧O(3)]

15 By indirect interpretation I mean a framework along the lines of Montague 1970 where, instead
of directly giving their semantic values (as in, say, Heim & Kratzer 1998), an algorithm is
specified that takes (the LFs of) natural language expressions to their type-logical translations.

16 Actually, self-identity does satisfy (28) in totally ‘degenerate’ models with just one individual.
17 For expository reasons, Rooth (1985) uses a slightly more involved example to prove the

point: Nine is only the square of THREE.
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The reason for this failure lies in a peculiarity of the predicate O[dd num-
ber], whose extension is taken to not vary across Logical Space.18 Hence, in
particular, any proposition of the form ‘∧O(x)’ will coincide with either the
empty set or all of Logical Space. So the latter is the only true proposition
of that form, thus verifying (33). Unlike in the case of (1) and (2), though,
there is no escape from the conclusion that (33) is an inadequate formal-
isation of the truth conditions of (31), which, again, seem aptly captured
by (32). One may therefore doubt that the failure to adequately capture the
truth-conditions of (31) should be adduced to the notorious lack of fine-
grainedness of possible world semantics, as Rooth (p. 85f fn. 13) seems to
suggest: after all, the adequate formalisation (32), too, can be expressed in
that very framework. Moreover, the inadequacies due to rigid intensions may
lead to contingencies:19

(34) Only Mary is one of John and Mary and exactly as tall as either one.

Clearly, under the (hardly objectionable) assumption that John and Mary are
(rigid) names of different persons and the predicate be one of John and Mary
rigidly denotes the pair of them, (34) ought to come out as a contradiction.
And again it does if the sentence is analysed in terms of quantification over
individuals:

(35) (∀x)[[[x = j∨ x =m]∧ (∀y)[[y = j∨y =m]→ h(x) = h(y)]]→
x =m]

To see what (35) comes down to, one should first notice that its matrix (=
the scope of the outermost universal quantifier) is trivially satisfied by any
individual distinct from John: Mary satisfies it in view of the triviality of the
consequent (of the matrix); and any other individual satisfies it because it
trivially fails to satisfy the left conjunct of the antecedent. As a consequence,
the universal quantification in (35) boils down to:

18 As in the case of proper names (cf. fn. 4 above), this would have to be guaranteed by a
specific meaning postulate, e.g., ‘(∃X) � O = X’.

19 Slightly less artificial examples may be obtained if the domain of quantification is kept fixed:
Only this object is exactly as heavy as everything else. — The rest of this section deviates from
the Early Access version, which contained a faulty predicate logic analysis of (34) instead of
(35). Apart from getting the brackets right, the correction required some re-arrangement of
the material. I apologise for any consternation caused by my previous error and thank the
editors for allowing me to fix it for the final version.
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[[[j = j∨ j =m]∧ (∀y)[[y = j∨y =m]→ h(j) = h(y)]]→ j =m]

which contains a redundant conjunct and reduces to:

[(∀y)[[y = j∨y =m]→ h(j) = h(y)]→ j =m]

which in turn is equivalent, by the distinctness assumption, to the negation
of its antecedent and thus (by familiar quantifier laws) to:

(∃y)[[y = j∨y =m]∧ h(j) ≠ h(y)]

Eliminating the existential quantifier yields:

[h(j) ≠ h(j)∨ h(j) ≠ h(m)]

which boils down to:

(36) h(j) ≠ h(m)

This is not yet the desired contradiction, which only arises once the conven-
tional implicature triggered by only is taken into consideration. Before we
get to it, though, let us take a look at the ordinary content that alternative
semantics ascribes to (34):

(37) (∀p)[[∨p ∧ (∃x)p = ∧[[x = j∨ x =m]∧ (∀y)[[y = j∨y =m]
→ h(x) = h(y)]]]

→ p = ∧[[m = j∨m =m]∧(∀y)[[y = j∨y =m]→ h(m) = h(y)]]]

Closer inspection reveals that (37) is logically valid. To see this, one may
observe that (37) can be equivalently rewritten as the tautology (38), where
pj≈m abbreviates ‘∧[h(j) = h(m)]’:

(38) (∀p)[[∨p ∧ p = pj≈m]→ p = pj≈m]

The details of the reformulation are kindly left to the reader. As in the case of
(31), then, the alternative treatment misanalyses a contradiction, (34), as valid.
However, there is a difference that comes to the fore once full [conventional]
content is taken into consideration, i.e., the combination of ordinary (truth-
conditional, assertoric, at-issue) content and conventional implicature. In
the above formalisations the latter has been suppressed in the interest of
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readability.20 In the case of sentences containing only, it can be identified
with the (ordinary) content of the sentence without only. As a case in point,
the predicate logic and alternative formalisations of the full conventional
content of (1) come out as (40) and (39), respectively, where the second line
gives a logically equivalent (‘≡’) reformulation of the first:

(39) [(∀x)[S(x)→ x =m]∧ S(m)]

≡ (∀x)[S(x)↔ x =m]

(40) [(∀p)[[∨p ∧ (∃x)p = ∧S(x)]→ p = ∧S(m)]∧ S(m)]

≡ [(∀p)[[∨p ∧ (∃x)p = ∧S(x)]↔ p = ∧S(m)]]

By the same token, the full content of (31) ought to be (41), as predicted by
standard predicate logic formalisation, but comes out as (42) in alternative
semantics:

(41) (∀x)[O(x)↔ x = 3]

(42) (∀p)[[∨p ∧ (∃x) p = ∧O(x)]↔ p = ∧O(3)]

Since the ordinary content (32) of (31) is already contradictory, so is the
stronger full content (41). On the other hand, (42) only adds the uninformative
conjunct that 3 is odd to the trivial ordinary content (33) of (31), and is thus
also trivially true. So on both analyses of (31), ordinary content and full
content coincide. This may be taken to confirm the suspicion that (31) is
an exceptional or even neurotic case, somewhat beyond the proper area of
application of possible worlds semantics.

However, things stand differently with (34). Given that, according to the
alternative analysis, its ordinary content comes out as trivial, its full content
coincides with its conventional implicature, i.e., the proposition that Mary is
[one of John and Mary and] as tall as [either Mary or] John:

(43) [(∀p)[[∨p ∧ p = pj≈m]→ p = pj≈m]∧
[[m = j∨m =m]∧ (∀y)[[y = j∨y =m]→ h(m) = h(y)]]]

≡ [(∀p)[[∨p ∧ p = pj≈m]→ p = pj≈m]∧ h(m) = h(j)]

≡ h(m) = h(j)

20 The analysis in Rooth 1985: 120ff. takes both assertions and implicatures into account.
While I follow Rooth 1985: 40& passim in classifying the non-at-issue part as a conventional
implicature (rather than, say, a presupposition), I am actually agnostic about this question; I
do not think anything in my argumentation hinges on this.
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On the predicate logic analysis, on the other hand, the conventional im-
plicature of (34) is (44), which does, obviously, contradict its ordinary content
(36), as expected and desired:

(44) [[m = j∨m =m]∧ (∀y)[[y = j∨y =m]→ h(m) = h(j)]]

≡ h(m) = h(j)

(34) differs from run-of-the-mill examples for lacking fine-grainedness: though
some apparent contingencies are known to come out as contradictions in pos-
sible worlds semantics21, contradictions that express contingent propositions
are unheard of (to my knowledge, anyway). The fact that certain contradict-
ory sentences are misanalysed as expressing contingent propositions should
not be blamed on the notorious lack of fine-grainedness of the framework
alone: after all, the predicate logic account of only does get (34) right and is
within the reach of possible worlds semantics. Hence the example may and
should be taken as indication against the analysis of only as a propositional
quantifier in possible worlds semantics.

5 Quantification over alternative properties

The upshot of the above reasoning is that quantification over individuals
cannot be fully captured by quantification over propositions. But then the
latter seems to be a peculiarity of the cross-categorial treatment of Rooth
1985: ch. III anyway: later analyses in the tradition of alternative semantics
follow Rooth 1985: ch. II and Rooth 1992 in treating only as quantifying over
alternative intensions of the constituent it modifies. It may thus seem that
the above considerations do not bear on these approaches where (alternat-
ive) propositions give way to (alternative) intensions in general. Indeed, (1)
then does come out as directly quantifying over alternatives to proper name
denotations — and thus as a quantifier over individuals, just as the predicate
logic formalisation (3) would have it.22 However, if only modifies a larger
constituent that (properly) contains the focussed name it associates with, the
alternative intensions of this constituent — which need not be propositions
(and typically are not) — are plagued by the very same potential lack of vari-

21 Cf. Kaplan 1995 and Kripke 2011 for interesting cases.
22 These denotations may be referents or intensions, depending on the details of the framework.

In view of the rigidity of names (cf. fn. 4 above), this difference has no bearing on the truth-
conditions.

8:16



Quantification over alternative intensions

ation deplored in connection with propositions above, and thus susceptible
to the same kind of reasoning.

To begin with, the argument of the previous section may be adapted to
certain cases in which only modifies a proposition-denoting clause:

(45) Bill knows only that Mary is one of John and Mary and exactly as tall
as either one.

It appears that (45) is contradictory in that its full content implies (46), which
can only be true if Bill believes that both Mary and John satisfy (47) (in lieu of
x), thus contradicting (45):

(46) Bill knows that Mary is one of John and Mary and exactly as tall as
either one.

(47) Bill knows only that x is one of John and Mary and exactly as tall as
either one.

These examples are admittedly marginal and hardly the stuff that kills a
theory. However, when quantification over individuals is mimicked by quan-
tification over intensions other than propositions, the worries addressed in
Sections 1–3 return in a different guise. As a case in point, instead of analysing
(48a) in terms of alternatives to its conventional implicature, as in (6b) above
(and repeated below), alternatives to the predicate intensions, as in (48c), are
supposed to achieve the intended effect:23

(48) a. John only met Mary. [= (6a)]
b. (∀p)[[ ∨p ∧ (∃y) p = ∧M(j, y)]→ p = ∧M(j,m)] [≈ (6b)]
c. (∀P)[[ P{j} ∧ (∃y) P = x̂ M(x,y)]→ P = x̂ M(x,m)]

where ‘P ’ ranges over properties, i.e., possible intensions of unary predicates.
One may wonder whether (48c) fares better than (48b) with respect to the
problems discussed above. To begin with, it should be noted that the two
formulae are not equivalent. For although (48c) implies (48b), this implication
does not reverse.24

23 ‘x̂ ϕ’ abbreviates ‘∧λx. ϕ’, thus denoting the intension of a λ-abstracted predicate.
24 To show this, one may consider a (totally ‘degenerate’) model with one world w and

four individuals h, j, m, and s that assigns to M the characteristic function of the set
{(h, j), (h, s), (j, h), (j,m), (m,h)} as its extension (at w). In such a model, (48b) comes out
true (at w), but (48c) does not. A formal proof can be found on p. 13f. of the archived first
draft of this paper: http://semanticsarchive.net/Archive/mRhOGNjN/propquant.pdf.
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Despite an increase in granularity, the analysis (48c) still cannot escape
the worries and objections previously raised against quantification over
propositions. In fact, a closer look at counter-models to “(48b) ⇒ (48c)”
mentioned in the preceding paragraph (and fn. 24) reveals that properties
are almost as indiscriminate as propositions: though (48a) does come out
false (as it should), the analogous (49a) comes out true (though it shouldn’t)
if analysed as (49b):

(49) a. Harry only met Sue.
b. (∀P)[[ P{h} ∧ (∃y) P = x̂ M(x,y)]→ P = x̂ M(x, s)]

The reason for this again lies in a lack of fine-grainedness: ‘x̂ M(x, j)’ and
‘x̂ M(x, s)’ denote the same property, whose only possible extension is {h},
and this is the only property of the form ‘x̂ M(x,y)’ that h has (at w),
just as (49b) requires. So (49b) is true even though, according to the only
world of the model described, the referent of Harry stands in the relation
denoted by M to more than one individual. Needless to say, even for the above
‘degenerate’ model, a predicate logic formalisation taking only as quantifying
over individuals would get the truth values of both (48a) and (49a) right.

The example illustrates that the more general approach involving predic-
ate intensions inherits the deficiencies of propositional quantification. This
may come as a surprise in view of the adequacy of the predicate logic form-
alisation, according to which only is a quantifier over individuals and thus
ought to be less discriminative than a quantifier over alternative properties.
However, the finesse of the latter is lost on the individuals to be quantified
over as the sample analysis (48c) indicates and, more generally, a survey of
the three quantifiers in question makes clear:

(50) a. λy. λQ. (∀z) [Q{z} → z = y]
b. λp. λA . (∀q) [[∨q ∧A (q)]→ q = p]
c. λx. λP. λS . (∀S) [[S{x} ∧S (S)]→ S = P]

The quantifier in (50a) applies to (the referent of) the focussed element y0
associated with only and (the intension of) the predicate Q0 expressed by the
rest of the sentence (minus only); the latter may be obtained by a standard λ-
abstraction mechanism.25 Taking (48a) as an example, y0 would be the bearer
of the name Mary, and Q0 the property denoted by ‘ẑ M(j, z)’. Thus (50a) is

25 Cf. Heim & Kratzer 1998: 96.
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a special case of a folklore analysis of only as a binary (non-conservative)
quantifier over individuals.26

The quantifier in (50b), on the other hand, applies to the proposition
p0 = {w|y0 ∈ Q0(w)} expressed by the whole sentence (minus only) and
the set A of its alternatives (including p0 itself):

A = {q|(∃z) q = {w|z ∈ Q0(w)}}

In the above example (48a), p0 would thus be the proposition denoted by
‘∧M(j,m)’, and A would be the set of propositions of the form ‘∧M(j, z)’.
Hence (50b) is Rooth’s propositional quantifier analysis Rooth 1985: 120, with
some minor (and mostly notational) changes.27

The quantifier in (50c) applies to (the referent of) the subject x0, (the
intension of) the (clause) predicate P0, and the set S of its alternatives:

S = {S|(∃z)(∀w)S(w) = R0(w)(z)}

where R0 is constructed from the predicate (minus the focussed element)
by a λ-abstraction device, in analogy to the construction of Q0 from the
whole sentence; in particular, for any world w : P0(w) = R0(w)(y0). In the
case of (48a), R0 would coincide with the relation expressed by M. And the
three arguments would be: the referent of the name John (= x0), the property
denoted by ‘x̂ M(x,m)’ (= P0), and the set of properties of the form ‘x̂ M(x, z)’
(= S ). (50c) is adapted from the ‘domain selection’ analysis of Rooth 1985:
44, according to which only may quantify over alternative VP-denotations.28

If analysed as the quantifier in (50a), only imposes the assumedly correct
truth condition on the resulting sentence, viz., that the singleton {y0} cover
the extension of Q0. On the other hand, a careful comparison of the above

26 Cf. Geach 1980 [1962]: 207ff. for an early source.
27 In particular, Rooth’s Russellian format has been Frege-Churched (in the sense of Kaplan

1975); the variable ranging over the set of alternatives has been λ-bound (and renamed from
‘C’ to‘A ’); and the conventional implicature has been omitted, in line with the analyses in
Section 1.

28 This ‘direct’ account of only as a quantifier over properties, which can be found in most
alternative semantics approaches from Rooth 1992 onward, must not be confused with the
type-shifted version derived from (50b) in the cross-categorial account of Rooth 1985: ch. III,
which reads (on p. 121, again glossing over matters of notation and type regimentation):

(*) λx. λP. λA . (∀p)[[∨p ∧ A (p)]→ p = ∧ P{x}]

Obviously, (*) boils down to the propositional quantifier analysis scrutinised in Sections 1–4
above.
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quantifiers brings out the inadequacy of both (50b) and (50c).29 On the one
hand, the observations in Section 1 already indicate why the adequate truth
conditions are not guaranteed to be expressible in terms of the two arguments
of the quantifier in (50b). And despite its more complex type and finer
granularity, the quantifier in (50c) does not attain the adequacy of the truth
conditions imposed by (50a) either. Loosely speaking, the reason is that
its extra argument is wasted on the subject instead of relating directly
to the focussed element: the injective (one-one) function required for the
equivalence between (50c) and (50a) does not concern the subject argument.
Of course, this does not make the quantifier in (50c) as such inadequate,
but only the way it is matched with its linguistic environment, following the
alternative semantics approach. In fact, if applied to the focussed element
y0, the property Q0 of abstracting from it, and the set of all properties that
nothing but y0 has, the quantifier (50c) would impose the truth conditions
of the full content; but then this procedure would not be in line with the
alternative semantics architecture.

6 Conclusion

Now the we have seen that not all is well with the alternative treatment of
only as a quantifier over propositions,30 we may wonder whether similar
deficiencies could not be found in other applications of alternative semantics,
or in other theoretical frameworks that make use of similar assumptions
and analyses. Given the wide-ranging literature on these topics, I will have to
confine myself to some general remarks here.

The cause for all the trouble observed above is that the truth conditions of
certain sentences involve quantification over individuals, which is mimicked
by quantification over propositions. In terms of (two-sorted) types this means
that operators on the domain (et) are ‘coded’ by corresponding operators
on the domain ((st)t). The mismatch between these domains has been
observed before and elsewhere, notably in the semantics of interrogatives,
where it has also been held responsible for a number of inadequacies of

29 Rigorous proofs can be found on p. 15ff. of the archived first draft of this paper: http:
//semanticsarchive.net/Archive/mRhOGNjN/propquant.pdf.

30 I am returning to the uniform cross-categorial treatment of Rooth 1985: ch. II because I trust
it that the observations in Section 5 have made it clear that the core problems are preserved
in the more sophisticated versions employing quantification over alternative intensions.
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proposition-based approaches.31 More specifically (and ignoring irrelevant
intensional parameters), the alternative analysis essentially replaces the
(apparently adequate) quantifier Oonly of type ((et)(et)), defined in (51), by
an operator O− of type (((st)t)((st)t)), satisfying the equivalence in (52) (for
all individuals x and properties P ):

(51) λE.λx. (∀y)[E(y)→ y = x] [≈ (50a)]

(52) O−(∧[P{x}], λp.(∃y) p = ∧[P{y}]) ≡ Oonly(x,∨ P)

The discussion in Sections 1–4 brought out that the equivalence (52) does
not hold for all instances and that its exact scope is not easy to define.
Since similar assumptions have been made concerning the treatment of other
focus-sensitive elements within alternative semantics, these arguments are
likely to carry over to them. As a case in point, according to a standard
analysis of even, it contributes a (non-at-issue) proposition by operating on
the alternative intensions of its scope. Again, the situation is essentially as
in (51) and (52), with (53) being the operator Oeven (of type ((s(et))(et)))
that expresses the intended reading, and (54) the equivalence condition that
alternative semantics imposes on its surrogate (of type (((st)t)((st)t))):32

(53) λP.λx. (∀y)µ(P{x}) ≤ µ(P{y})
(54) O−(∧[P{x}], λp.(∃y) p = ∧[P{y}]) ≡ Oeven(x, P)

It should not come as a surprise that (54) leads to the very same problems
as the alternative reduction (52) of only; finding the relevant examples and
adapting the above arguments is left to the reader. A more principled invest-
igation into the domain switching strategy underlying alternative semantics
will have to be left to future research on type-shifting.

So is the alternative semantics analysis of only doomed to assign inad-
equate truth conditions? Maybe not. Part of the trouble is the identification
of propositions with sets of possible worlds. As Mats Rooth (op. cit.) already

31 See, e.g., Groenendijk & Stokhof 1984, p. 280ff., Zimmermann 1985, p. 436f., Krifka 2001,
or Aloni et al. 2007 for pertinent remarks and observations concerning leading frameworks
of interrogative semantics. A reviewer also pointed out an interesting connection between
question semantics and the discussion in Sections 1–3: ‘The danger would be that in degen-
erate models, Mary and Bill would incorrectly count as the same answer to the question Who
left?.’

32 µ is some contextually fixed probability measure; see, e.g., Wilkinson 1996: 194 for an analysis
along these lines. The type difference between (51) and (52) is due to the intensionality of
even, which only lacks.
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pointed out, going ‘ “more intensional” ’ — along the lines of property the-
ory33 — might be an option. However, rather than replacing the indeterminacy
of intended models by an indeterminacy of fine-grained properties, one may
stick to the possible worlds framework but incorporate (parts of) a competing
semantic approach to focus: the theory of structured propositions and mean-
ings,34 which offers precisely the degree of granularity needed to capture
the truth conditions of ordinary quantification over individuals. As a case in
point, (1) could be accounted for adequately after replacing propositions in
(2) by pairs of properties and individuals, as in (55):

(1) Only Mary is asleep

(2) (∀p)[[∨p ∧ (∃x) p = ∧S(x)]→ p = ∧S(m)]

(55) (∀π)[[↓ π ∧ (∃x) π = (S, x)]→ π = (S,m)]

where π ranges over structured meanings (of appropriate types) and ↓ evalu-
ates them in a way that ‘↓ (P,x)’ comes down to ‘P{x}’. It is not hard to see
that (55) is equivalent to the intended analysis (3):35

(3) (∀x)[S(x)→ x =m]

In any case it would seem that life in the alternative paradise that Rooth has
created does not come for free.

33 Bealer 1982. Rooth quotes Chierchia 1984 in this connection.
34 I am indebted to Irene Heim (p.c., June 2014) for bringing up this suggestion. See Stechow 1991

and Krifka 2001 for expositions and comparison of the frameworks. In fact, the structured
alternatives employed by Onea 2013: ch. 8 come close to this kind of hybrid architecture.

35 This may be established by the following chain of IL-equivalences:

(∀π)[[ ↓ π ∧ (∃x) π = (S, x)]→ π = (S,m)]
≡ (∀π)[(∃Q)(∃y)π = (Q,y)→ [[ ↓ π ∧ (∃x) π = (S, x)]→ π = (S,m)]]

def. of struct. prop.
≡ (∀π)(∀Q)(∀y)[π = (Q,y)→ [[ ↓ π ∧ (∃x) π = (S, x)]→ π = (S,m)]]

quantifier law
≡ (∀Q)(∀y)[[↓ (Q,y)∧ (∃x) (Q,y) = (S, x)]→ (Q,y) = (S,m)] identity law
≡ (∀Q)(∀y)[[Q{y} ∧ (∃x) (Q,y) = (S, x)]→ (Q,y) = (S,m)] def. of ↓
≡ (∀Q)(∀y)[[Q{y} ∧ (∃x)[ Q = S∧ x = y]]→ [Q = S∧y =m)]] def. of pair
≡ (∀Q)(∀y)[Q = S→ [Q{y} → [Q = S∧y =m]]] predicate logic
≡ (∀y)[S(y)→ [S = S∧y =m]] identity law + prop. logic
≡ (∀x)[S(x)→ x =m] identity law + renaming
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