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Abstract One of the great successes of the application of generalized quan-
tifiers to natural language has been the ability to formulate robust seman-
tic universals. When such a universal is attested, the question arises as to
the source of the universal. In this paper, we explore the hypothesis that
many semantic universals arise because expressions satisfying the univer-
sal are easier to learn than those that do not. While the idea that learn-
ability explains universals is not new, explicit accounts of learning that can
make good on this hypothesis are few and far between. We propose a model
of learning — back-propagation through a recurrent neural network — which
can make good on this promise. In particular, we discuss the universals of
monotonicity, quantity, and conservativity and perform computational ex-
periments of training such a network to learn to verify quantifiers. Our re-
sults are able to explain monotonicity and quantity quite well. We suggest
that conservativity may have a different source than the other universals.
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1 Introduction

At first glance, the natural languages of the world exhibit tremendous differ-
ences amongst themselves. After all, learning a second language as an adult
is not an easy task. Yet, early in one’s linguistics education, one learns that
languages do share tremendous amounts of structure and that the differ-
ences can be described, circumscribed, and analyzed. Thus arises one of the
central questions in linguistic theory: What is the range of variation in hu-
man languages? That is: which out of all of the logically possible languages
that humans could speak, do they in fact speak? A limitation on the range of
possible variation will be a property that all (or, at least almost all) languages
share. Such a property will be a linguistic universal.

Universals have been discovered at all levels of linguistic analysis. At the
phonological level, all languages have consonants and vowels. More robustly,
one can say that all languages have at least one unrounded vowel and at
least one back vowel.1 At the syntactic level, all languages have verbs and
nouns.2 Slightly more controversially, generative grammar as an enterprise
can be seen as systematically developing syntactic universals. For example,
the basic claim that grammatical rules are structure-dependent3 is a syntac-
tic universal. At the semantic level, it has been proposed that all languages
which have shape adjectives also have color and size adjectives.4 Closer to
the topic of the present paper is the claim that all languages have syntactic
constituents (Noun Phrases) whose semantic function is to express general-
ized quantifiers.5

Whenever a universal is attested, it is natural to ask for an explanation of
its source. Why does the universal hold? While significant differences as to
the type of answer to this question arise in the phonological and syntactic

1 See Hyman 2008 for a thorough discussion of phonological universals, including these two,
where they are called “Vocalic Universal #3” and “Vocalic Universal #4” on p. 98.

2 See Croft 1990. Newmeyer (2008) calls for hesitation on positing universals about syntactic
categories. Hengeveld, Rijkhoff & Siewierska (2004) discuss examples of languages that seem
not to make the distinction.

3 Chomsky 1965, and many others.
4 See Dixon 1977 for that universal. von Fintel & Matthewson (2008) provide an overview of

semantic universals.
5 See Barwise & Cooper 1981 for the source of the universal, Hengeveld, Rijkhoff & Siewierska

2004 for examples of languages lacking NP quantification, and Bach et al. 1995 for dis-
cussion. Note that for our purposes the universal can be formulated as a conditional: if a
language has NPs then their semantic function is to express generalized quantifiers over the
domain of discourse.
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domains, many theorists search for cognitive explanations of semantic uni-
versals. Such an explanation would locate the existence of a semantic univer-
sal in a feature of human conceptual apparatus with which semantics must
interface.

The present paper develops the hypothesis that semantic universals are
to be explained in terms of learnability, at least in the domain of quantifiers.
We focus on quantifiers simply because this is the area where the largest
number of substantial semantic universals have been posited. In developing
this hypothesis, we do not claim that learnability will be the only source of
semantic universals. For example, communicative need may play a key role
in some explanations. Rather, we want to explore how far the learnability
hypothesis can be pushed in this domain.

In the literature, there are at least two forms that the learnability argu-
ment takes. The first one focuses on the fact that a universal can restrict
the hypothesis space for a hypothetical learner of a semantic system.6 Be-
cause a universal greatly shrinks the space of possible quantifier meanings,
the learner does not have to explore as much. This makes it is easier7 to
learn these meanings. Seen this way, this learnability argument mirrors at
the semantic level Chomsky’s poverty of the stimulus argument for univer-
sal grammar.8

At a certain level, this first argument has to be correct: learning in a
smaller hypothesis space will invariably be easier than learning in a larger
one. Nevertheless, one should not overstate its conclusions, for two reasons.
Firstly, it could be that the benefit to learning from moving to a smaller
space is quite negligible. Piantadosi, Goodman & Tenenbaum (2013), in a pa-
per where they explore Bayesian learning of quantifiers, put the point very
eloquently:

Likely, the unrestricted space has many hypotheses which are
so implausible, they can be ignored quickly and do not affect
learning. The hard part of learning, may be choosing between

6 Barwise & Cooper (1981), Keenan & Stavi (1986), and Szabolcsi (2010) all present a form of
this argument.

7 Or, in the most extreme version: possible in the first place.
8 The term is coined in Chomsky 1980, though the argument has appeared in many places

in his work. See Pullum & Scholz 2002 for an overview and assessment. Both May (1991)
and Partee (1992) follow the argument all the way to the Chomskyan conclusion that the
meanings of functional expressions like determiners are innate.
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the plausible competitor meanings, not in weeding out a large
space of potential meanings. (p. 22)

Secondly, and more fundamentally, this form of argument can only ex-
plain why there are universals at all, but not which universals one observes.
Any proposed semantic universal has the benefit of decreasing the hypoth-
esis space for the language learner. Because of that, this argument cannot
distinguish between competing universals and so cannot explain the exact
pattern of universals that are attested. The most that could be gleaned from
this line of reasoning would be that one should search for stronger univer-
sals, since they consist in larger reductions of the hypothesis space and so
presumably provide a bigger benefit to learning.

The second form of the learnability argument runs as follows: seman-
tic universals hold because expressions satisfying the universal are easier
to learn than those that do not.9 Implicit here is a certain linking hypothe-
sis: meanings that are easier to learn are more likely to be lexicalized. While
this paper will not address this hypothesis, it is intuitively plausible: lan-
guages have words for meanings that are easier to learn and use composi-
tional methods to express more difficult-to-acquire meanings. As it presently
stands, however, this second argument has a major lacuna. For no semantic
universals has the argument been fully developed. In order to be more than
a suggestion, one cannot simply suggest that expressions satisfying a uni-
versal are easier to learn but must actually demonstrate that this is so. This
can be seen as a challenge.

Challenge: For the semantic universal(s) of choice, provide a model of learn-
ing on which expressions satisfying the universal are easier to learn than
others.

The present paper aims to meet the Challenge. In particular, we will fo-
cus on three universals in the domain of quantifiers: monotonicity, quantity,
and conservativity. We propose a model of quantifier learning by showing
how to train a certain kind of recurrent neural network to learn to verify
quantified sentences. Computer simulations yield promising initial results.
For both the monotonicity and quantity universals, we ran two experiments
and found in each that a quantifier satisfying the universal is indeed easier
to learn by this model than one that does not. The case of conservativity is

9 Peters & Westerståhl (2006: p. 173) allude to this argument for one of the quantifier univer-
sals to be discussed later.
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more complicated: for reasons to be discussed later, we did not expect our
learning model to be sensitive to conservativity. Still, we ran two experiments
as a kind of benchmark. As expected, in both experiments, a conservative
and non-conservative quantifier are indistinguishable in terms of learnabil-
ity. Against this backdrop, we argue that this might not be a problem since
that universal arguably has a different source.10

The paper is structured as follows. Section 2 presents a brief introduc-
tion to generalized quantifiers and explains the three universals that we will
study. Section 3 presents the model of learning — backpropogation-through-
time in a recurrent neural network — that we will apply to quantifiers. In
Section 4, we present experiments where we apply the model to each of the
universals, with mostly positive results. We provide a general discussion of
the results and possible objections in Section 5. In particular, we argue that
learnability by a recurrent neural network can be viewed as an operational-
ization of a general notion of semantic complexity. Finally, we conclude in
Section 6 by recording some future directions of research.

2 Quantifier universals

The universals that we focus on have to do with quantifiers, which are the
semantic objects expressed by determiners. A determiner is an expression
taking a common noun as an argument and generating a Noun Phrase. We will
assume a division of the determiners into two classes: simple and complex.
Examples of simple determiners are all, some, no, few, most, five. Examples of
complex determiners are all but five, fewer than three, at least eight or fewer
than five. Note that we do not at present provide a full account of exactly
what the distinction amounts to. For example, while being monomorphemic
certainly suffices for being simple, we leave it open that some determiners
that are not monomorphemic will still count as simple.11

As a first approximation, and following the influential Barwise & Cooper
1981, we assume that determiners denote type ⟨1, 1⟩ generalized quantifiers.

10 We note that an earlier body of work applied tools from the learning theory of formal lan-
guages to the problem of learning the meanings of quantifiers (Tiede 1999, Gierasimczuk
2007, 2009). The results obtained, however, are too limited in scope to adequately meet the
Challenge.

11 Arguably, most is not monomorphemic. See Hackl 2009, Kotek, Howard, et al. 2011, Kotek,
Sudo, et al. 2011, Solt 2016. Moreover, some argue that a much wider class, including no
and few, are also not monomorphemic. But these arguably should count as simple for the
purpose of formulating semantic universals.
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These can be thought of as being relations between two subsets of a given
domain of discourse. For example:

⟦every⟧ = {⟨𝑀,𝐴,𝐵⟩∶ 𝐴 ⊆ 𝐵}
⟦at_most_3⟧ = {⟨𝑀,𝐴,𝐵⟩∶ |𝐴 ∩ 𝐵| ≤ 3}

⟦most⟧ = {⟨𝑀,𝐴,𝐵⟩∶ |𝐴 ∩ 𝐵| > |𝐴 ⧵ 𝐵|}

Before proceeding, a few small notes on terminology. As a shorthand, we
will say that a determiner has a certain semantic property to mean that the
quantifier that the determiner denotes has that property. Sometimes, for a
determiner like every, we will write every as a shorthand for ⟦every⟧. We will
use Q and its ilk as variables over quantifiers. Because quantifiers are viewed
as set-theoretic objects, we will write ℳ ∈ Q when a structure/model ℳ
belongs to a quantifier.12 In other words, when a sentence Det N VP is true
when interpreted in a model ℳ, we will write ⟨𝑀, ⟦N⟧, ⟦VP⟧⟩ ∈ Det. In the
remainder of this section, we introduce three prominent semantic universals
about quantifiers.

2.1 Monotonicity

To motivate our first universal, consider the following sentences.

(1) a. Many French people smoke cigarettes.
b. Many French people smoke.

It is clear that (1a) entails (1b): the former cannot be true without the latter
being true. Similarly, this entailment does not depend on the choice of the re-
strictor — French people— or scopes — smoke cigarettes and smoke— so long
as the latter scope is strictly more general than the former. Moreover, com-
petent speakers of English recognize this fact easily. What speakers thereby
implicitly know is that many is upward monotone:

(2) Q is upward monotone if and only if whenever ⟨𝑀,𝐴,𝐵⟩ ∈ Q and 𝐵 ⊆
𝐵′, then ⟨𝑀,𝐴,𝐵′⟩ ∈ Q.

By contrast, the pattern seems to reverse if we replace many with few, as
seen in the following examples.

12 See Peters & Westerståhl 2006 for a thorough exposition of quantifiers in this tradition.
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(3) a. Few French people smoke cigarettes.
b. Few French people smoke.

Here, (3b) entails (3a). This is the reverse of the previous case: now, truth
is preserved when we move from a more general scope to a more specific
scope. In this case, we say that few is downward monotone:

(4) Q is downward monotone if and only if whenever ⟨𝑀,𝐴,𝐵⟩ ∈ Q and
𝐵 ⊇ 𝐵′, then ⟨𝑀,𝐴,𝐵′⟩ ∈ Q.

Finally, a determiner is monotone if and only if it is either upward or down-
ward monotone. The reader can verify that all of the simple determiners
mentioned at the beginning of the section are monotone. This appears to be
no accident of our choice of English or of that particular list of simple deter-
miners. Barwise & Cooper (1981) proposed the following semantic universal.

Monotonicity Universal: All simple determiners are monotone.

This universal rules out quantifiers such as an even number of and at least
6 or at most 2: increasing or decreasing the set 𝐵 can cause the cardinality
of 𝐴∩𝐵 to change in a way that flips the truth value of sentences with those
determiners, so they are not monotone. The claim then is that no simple
determiner in any natural language denotes those quantifiers.

2.2 Quantity

Our second universal captures the intuition that determiners express general
relations between (the denotations of) their restrictor and scope. Whether or
not a sentence of the form Det A B should not depend on the identity of any
particular A or B, nor on the manner of presentation of those sets. We will
build up to the next universal in stages, beginning with an idea borrowed
from discussions of logical constants. A permutation of a set is a bijection
from that set to itself. Permutations can be lifted from sets to models with
that set as its domain of discourse in a natural way. We can then say what it
is for a quantifier to be logical.

(5) Q is logical if and only if for all sets 𝑀 and permutations 𝜋∶ 𝑀 → 𝑀,
⟨𝑀,𝐴,𝐵⟩ ∈ Q if and only if ⟨𝜋(𝑀),𝜋(𝐴),𝜋(𝐵)⟩ ∈ Q.

In their seminal paper, Keenan & Stavi (1986) propose the universal that “Mo-
nomorphemic dets are logical” (p. 311). This rules out expressions such as
possessives (e.g., Susan’s) whose truth does depend on a particular element
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of the model and so might not be preserved when the elements are permuted.
Of course, possessives are not monomorphemic; the universal claims that no
monomorphemic determiner could have the same meaning as a possessive
like Susan’s.13

A slightly stronger universal than logicality appears to hold. It replaces
permutation-invariance with isomorphism-invariance. An isomorphism be-
tween two models is a bijection between their underlying sets that preserves
the additional structure of the model. In the case of models of the form
⟨𝑀,𝐴,𝐵⟩, this means that 𝐴 gets mapped to 𝐴′ and 𝐵 to 𝐵′.

(6) Q is isomorphism-invariant if and only if: if ⟨𝑀,𝐴,𝐵⟩ ≅ ⟨𝑀′, 𝐴′, 𝐵′⟩,
then ⟨𝑀,𝐴,𝐵⟩ ∈ Q if and only if ⟨𝑀′, 𝐴′, 𝐵′⟩ ∈ Q.14

Peters & Westerståhl (2006) formulate and defend the universal that all sim-
ple determiners are isomorphism-invariant.15 In other words, they endorse
the following universal.16

Quantity Universal: All simple determiners are isomorphism-invariant.

To understand what quantifiers this universal rules out as the denota-
tions of simple determiners, note the following fact: ⟨𝑀,𝐴,𝐵⟩ ≅ ⟨𝑀′, 𝐴′, 𝐵′⟩
if and only if the four sets 𝐴∩𝐵, 𝐴⧵𝐵, 𝐵⧵𝐴, and 𝑀⧵(𝐴∪𝐵) have the same
cardinality as their primed counterparts.17 So the Quantity Universal says
that the truth value of a simple sentence of the form Det N VP depends only
on those four quantities. This rules out lexical items from having the same
meaning as exceptive phrases like all …except engineers in sentences such
as:

(7) All students except engineers must take a creative writing class.

In particular, the truth of this sentence depends on membership in a fixed
set of engineers, and not merely the sizes of the sets built out of the students
and those taking a creative writing class.

13 See Peters & Westerståhl 2013 for a thorough analysis of possessives.
14 Generalized quantifier theory, as developed in mathematical logic, generally builds

isomorphism-invariance into the definition of a quantifier. See Mostowski 1957, Lindström
1966 for the founding documents of that tradition. For application to natural language, how-
ever, we do not impose the requirement but see it as an additional constraint on quantifiers.

15 Their exact wording (p. 330): “All lexical quantifier expressions in natural languages denote
ISOM quantifiers.”

16 The name ‘Quantity’ comes from van Benthem (1984), who uses it in the present sense.
17 See Peters & Westerståhl 2006: p. 158.
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Additionally ruled out as candidate meanings of simple determiners are
quantifiers that depend on the manner of presentation of the restrictor and
scope. For example, consider the following.

(8) The first three students to solve the problem will get extra credit.
(9) Every other house on that block is vacant.

The truth of both (8) and (9) depends on the order in which elements of the
restrictor — students and house on that block, respectively — are inspected. It
seems that no language has a lexical item fthree which has the meaning of
the first three in (8).18 Similarly, one can imagine other sentences whose truth
depends on the spatial arrangement of the restrictor. All such expressions
are ruled out as possible determiners by the Quantity Universal.

2.3 Conservativity

Our final universal — arguably the most widely discussed of the three — cap-
tures the intuition that the restrictor genuinely restricts what a sentence talks
about. That is, sentences of the form Det N VP are in some sense about the
Ns and nothing else. That this universal holds can be observed by noting the
felt equivalence between the following pairs of sentences.

(10) a. Every student passed.
b. Every student is a student who passed.

(11) a. Most Amsterdammers ride a bicycle to work.
b. Most Amsterdammers are Amsterdammers who ride a bicycle to

work.

The formal concept at play here has been called conservativity.

(12) Q is conservative if and only if ⟨𝑀,𝐴,𝐵⟩ ∈ Q if and only if ⟨𝑀,𝐴,𝐴 ∩
𝐵⟩ ∈ Q.

Barwise & Cooper (1981) formulated and defended the following universal.19

18 An anonymous referee observes that while this is true, first is a widely attested lexeme.
While true, we do not think this constitutes a counter-example to the universal because first
on its own is not a determiner. We find it plausible to analyze first in a sentence like the
first house is blue as an adjective modifying house; the resulting NP then combines with the
determiner the.

19 Because the term conservative was not introduced until Keenan & Stavi 1986, the original
formulation was in terms of a quantifier living on a witness set. We follow the norm of
formulating in terms of conservativity for concision.
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Conservativity Universal: All simple determiners are conservative.20

This universal rules out quantifiers that depend on other portions of the
model besides 𝐴, such as 𝐵⧵𝐴. As an example, there is no determiner equi in
any language such that the following two sentences are equivalent in mean-
ing.

(13) a. Equi students are at the park.
b. The number of students is the same as the number of people at the

park.

This concludes the presentation of the semantic universals to be studied
here. Because we primarily focus on the explanation/source of semantic uni-
versals, we do not present a detailed defense of each universal. Rather, we
assume that the universals hold and attempt to explain why they do in terms
of learnability. That being said, we know of virtually no counter-examples to
the three universals being studied.21

3 The learning model

Recall that our Challenge was to provide a model of learning on which
expressions satisfying semantic universals were easier to learn than those
that do not. Having now explained three such universals in the domain of
quantifiers, we develop model of learning quantifiers. In the next section, we
present experiments showing that this model can meet the Challenge.

The basic idea will be to train a neural network to learn how to verify
and falsify quantified sentences. A neural network is a computational device
modeled after the methods of computation and communication in biological
nervous systems.22 Such a network consists of a number of nodes, which are

20 In fact, conservativity often is a claim about all determiners, not just the simple ones. This
claim sits well with the view we defend in Section 4.3 that this universal is not a constraint
on the lexicon but arises from the workings of the syntax-semantics interface.

21 Most prominently, ‘only’ and the reverse proportional reading of ‘many’ (first observed in
Westerståhl 1985) have been claimed to be counter-examples to Conservativity. One can
argue that neither is a determiner: the former is an adverb (von Fintel 1997) and the latter
a gradable adjective (Romero 2015). Or one can observe that they are ‘conservative on their
second argument’ and attempt to assimilate this to standard conservativity. See von Fintel &
Keenan 2018 for a recent discussion and references.

22 See Rumelhart, McClelland & The PDP Reserach Group 1986a,b for an overview of early pio-
neering work applying neural networks to human cognition. For modern overviews of this
area of research, we recommend Nielsen 2015, Goodfellow, Bengio & Courville 2016.
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arranged sequentially in layers. Activation — a numerical quantity — travels
through the layers because nodes in one layer are connected to those in the
subsequent one. The connections between nodes can have different weights,
reflecting how important the activation in one node is to another. Such a
network looks schematically like Figure 1.

Input layer Hidden layer Hidden layer Output layer

Figure 1 A multi-layer feed-forward neural network.

The first layer is called the input layer. The final layer is called the output
layer. If the input layer has 𝑛 nodes and the output layer has 𝑚 nodes, then
the network computes a function from ℝ𝑛 to ℝ𝑚. The layers — if there are
any — in between the input and output layers are called hidden layers. Com-
putation works as follows: each node computes a weighted combination of
the activations of the nodes that connect to it and then applies a nonlinearity.
Somewhat more concretely, for a non-input layer 𝑙, we have that

(14) �⃗�𝑙 = 𝑓(𝑊𝑙 ⋅ �⃗�𝑙−1 + �⃗�𝑙)

where �⃗�𝑙 is the vector of activations in layer 𝑙, 𝑊𝑙 is a matrix containing the
weights of the connections (i.e., 𝑊𝑖𝑗 is the strength of the connection from
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node 𝑖 in layer 𝑙 − 1 to node 𝑗 in layer 𝑙), �⃗�𝑙 is a vector of biases, and 𝑓 is
some non-linear function applied point-wise.23

Such a network learns to approximate a given function by gradually up-
dating the weights and biases in a way that it moves closer to the given func-
tion. Formally, this is done by (stochastic) gradient descent. Letting 𝜃 denote
a long vector containing all of the parameters of the network (i.e., all the
weights and biases), we can think of the network as computing a function
of these parameters and the input, which we will denote NN(𝜃, �⃗�), where �⃗�
is an input. The learning will be supervised: we have a set of data points
{�⃗�𝑖, �⃗�𝑖}𝑖∈𝐼, indexed by a finite set 𝐼, which (partially) capture the given func-
tion’s input-output relationship. We assume that there is a total loss function,
which is the mean of a ‘local’ error function ℓ. ℓ is defined on ℝ𝑚 ×ℝ𝑚, and
measures how close the network’s output is to the true output.

(15) 𝐿 = 1
|𝐼| ∑𝑖 ℓ(NN(𝜃, �⃗�𝑖), �⃗�𝑖)

Gradient descent works by considering 𝐿 as a function of 𝜃, and then moving
around that space towards lower and lower values of 𝐿. Formally, at iteration
𝑡 of training, the parameters of the network are updated by

(16) 𝜃𝑡+1 ← 𝜃𝑡 −𝛼∇𝜃𝐿

where 𝛼 is a learning parameter. The gradient ∇𝜃𝐿 can be computed by the
famous backpropagation algorithm. Intuitively, a forward pass through the
network generates a guess, after which an error ℓ is calculated. This error
can be sent in a backward pass through the network to compute the partial
derivative with respect to each parameter.

In practice, more complicated update rules than (16) — with learning rates
that are not constant — are deployed. Similarly, stochastic gradient descent
improves on this by updating after a mini-batch of data points (as small as
one example) is processed, instead of only updating after all of the data have
been processed. Conceptually, however, the algorithms work the same way:
the weights and biases of the network are updated in such a way that loss is
reduced, moving the network’s function closer to the true function.

To train a neural network to learn the meanings of quantifiers, we will
have it learn to do quantifier sentence verification. That is, we want the input
to the network to be a pair ⟨ℳ,Q⟩ of a model and a quantifier expression,
and the network will output a 1 or a 0 corresponding to whether ℳ ∈ Q or

23 Common choices here are the sigmoid 𝜎(𝑥) = 1
1+𝑒−𝑥 and hypertangent tanh(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 .
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not. More precisely, the network will output a probability: how strongly the
network ‘believes’ that ℳ ∈ Q.

Two features of this task require moving to a model slightly richer than a
standard feed-forward neural network as just described. Firstly, the models
belonging to a quantifier can come in many different sizes, but these neural
networks require a fixed-length input. In practice, one often extracts features
from an input, so that variable-sized inputs get mapped to a fixed-sized rep-
resentation. We do not, however, want to pre-select the features of a model
that will be relevant to the quantifier verification task, preferring to give the
network the raw model. Secondly, to model quantifiers like first three that
fail the Quantity Universal, we want the model to be presented sequen-
tially to the network, so that it can be sensitive to the order of presentation
of objects.

So-called recurrent neural networks overcome both of these limitations.
The key innovation in these networks is that they have ‘loops’: as they pro-
cess a sequential input, they maintain a state that gets passed on to the next
step.24 Networks of this type are trained by a method called Backpropagation-
Through-Time.25 Essentially, the loops in the network are ‘unfolded’ for as
many steps as in the input sequence, and standard backpropagation is used
to calculate the gradients. Figure 2 depicts the architecture and this unrav-
eling schematically. In this figure and in what follows, we omit the use of
arrows to denote vectors in order to improve readability.

The particular form of RNN that we will use is called a long short-term
memory (LSTM) network.26 While these were introduced to solve a technical
problem in training RNNs,27 they also admit of an intuitive interpretation. As
the network processes a sequence, it maintains a state 𝑐𝑡. At item 𝑡 in the
sequence, the network chooses which bits of the cell to forget, and which bits
of the input to write to the cell. In this way, the network maintains a form of
memory as it processes a sequence. Mathematically, the network computes
the following function, depicted schematically in Figure 3, and subsequently
explained intuitively.

24 For early applications, see Jordan 1997, Elman 1990, Bengio 1991.
25 See Werbos 1988 for an early version of the algorithm.
26 Introduced in Hochreiter & Schmidhuber 1997.
27 The so-called problem of vanishing and exploding gradients: the unrolling used in BPTT

tends to produce gradients that either become very close to zero or very large.
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𝑥1

ℎ1
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ℎ𝑡

⋯

Figure 2 A recurrent neural network (RNN), unrolled as in
Backpropagation-Through-Time. The 𝑥𝑖 are the input sequence
of vectors, and the ℎ𝑖 are output vectors. At time-step 𝑖, an RNN
receives both 𝑥𝑖 and ℎ𝑖−1 as inputs. (At the first time-step, some
ℎ0 must be fed into the network. Typically, this will be all zeros
or a random vector.) The boxed 𝑁 represents some mathematical
function, usually a kind of neural network.

(17) LSTM computation:

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ ℎ𝑡−1𝑥𝑡 +𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ ℎ𝑡−1𝑥𝑡 +𝑏𝑖)
̂𝑐𝑡 = tanh (𝑊𝑐 ⋅ ℎ𝑡−1𝑥𝑡 +𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ⊙𝑐𝑡−1 + 𝑖𝑡 ⊙ ̂𝑐𝑡
𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ ℎ𝑡−1𝑥𝑡 +𝑏𝑜)
ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡)

In the equations above,⊙denotes component-wise multiplication, and ℎ𝑡−1𝑥𝑡
represents vector concatenation. Note that the computation of 𝑓, 𝑖, ̂𝑐, 𝑜 are in-
stances of the basic neural network layer activation computation from equa-
tion (14), with ℎ𝑡−1𝑥𝑡 as the ‘previous activation’.

The equations 𝑓𝑡 and 𝑖𝑡 should be thought of as forget and input gates,
respectively. Consider 𝑓𝑡. It will be a vector of the same number of dimen-
sions as 𝑐𝑡. The sigmoid activation function used outputs values between 0
and 1. The value of 𝑓𝑡 in dimension 𝑗 can be thought of as how strongly to
‘remember’ element 𝑗 of the state vector 𝑐𝑡−1. This is due to the element-wise
multiplication of 𝑓𝑡 and 𝑐𝑡−1 in the calculation of 𝑐𝑡. For instance, if element
𝑗 of 𝑓𝑡 is 0, then the corresponding element of 𝑐𝑡−1 will be entirely erased.
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𝑓𝑡
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ℎ𝑡

ℎ𝑡

Figure 3 A long short-term memory (LSTM) network. The orange nodes
represent neural network layers: matrix multiplication by a
weight matrix (plus addition of bias) before a point-wise nonlin-
earity as labeled. The blue nodes represent pointwise application
of a function. The merging of two arrows represents vector con-
catenation and the splitting of an arrow represents copying.

The input gate 𝑖𝑡 works similarly, though it interacts not directly with 𝑐𝑡−1,
but with a set of ‘candidate’ values ̂𝑐𝑡 for the next state vector 𝑐𝑡. Finally, the
equation for 𝑐𝑡 encapsulates the idea that values of the state are forgotten
according to 𝑓𝑡 and new ones are written according to 𝑖𝑡. One last output
gate 𝑜𝑡 filters which components of the cell 𝑐𝑡 to output at each time step.

Before proceeding, we make two remarks motivating our choice of LSTM
networks. Firstly, these networks have become the gold standard type of
neural network for processing sequential data. They have been crucial com-
ponents in models that have achieved remarkable results in tasks like lan-
guage modeling,28 image and video captioning,29 and machine translation.30

To that end, we have not tailor-made a network architecture to our task, but
grabbed one off-the-shelf and applied it to the task of learning quantifiers.

28 Graves 2013, Jozefowicz et al. 2016
29 Xu et al. 2015, Donahue et al. 2017
30 Sutskever, Vinyals & Le 2014, Wu et al. 2016
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Secondly, recent work in neuroscience shows that gating mechanisms not
unlike those that regulate the flow of information in an LSTM (e.g., the for-
get and input gates) underlie the operation of working memory in humans.31

These two factors make our choice of network model extremely natural and
well-suited to the task of addressing the Challenge: the model appears to
be domain-general and biologically plausible.

Here is how we will apply an LSTM to the task of verifying a quantifier.
We want its input to be a sequence, representing a model, together with a
quantifier, and its output to be a guess at the truth-value. Thus, it is a se-
quence classification task.32 The relevant truth-value to be guessed is for a
sentence of the form ‘Q A B’. Because our focus is on learning the meaning
of the quantifier and not on any syntactic parsing, we take the 𝐴 and 𝐵 to be
schematic and present the model with objects labeled for their membership
in those sets.

The zones of a model —𝐴∩𝐵,𝐴 ⧵𝐵,𝐵 ⧵𝐴,𝑀⧵ (𝐴∪𝐵)— will be encoded
as one-hot vectors. For example, an element of 𝐴 ∩ 𝐵 will be encoded as
[1 0 0 0]. We assume the models are enumerated, and run through the
enumeration, generating a sequence of vectors. Finally, each quantifier is also
labeled with a one-hot vector, in as many dimensions as there are quantifiers.
The vector for the quantifier is concatenated to each element’s vector. One
can think of this in the following way: as the network processes the model se-
quentially, it always has access to the sentence that it’s attempting to verify in
much the same way as human participants often do in sentence-verification
experiments. This should make the learning task slightly easier, since the
network does not have to remember what quantifier it is verifying. In (18),
we provide a detailed example of this encoding.

31 McNab & Klingberg 2008, Gisiger & Boukadoum 2011
32 One may observe that our present model thus generalizes the semantic automata ap-

proach to quantifiers, pioneered by van Benthem (1986) (see Steinert-Threlkeld & Icard 2013,
Steinert-Threlkeld 2016, Szymanik 2016 for later work in the tradition). There, different
kinds of automata process sequences of letters from an alphabet in much the same way
that our LSTM will process a sequence of vectors. A primary advantage of using recurrent
neural networks for modeling quantifiers is the ability to apply back-propagation as a model
of learning.
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(18) Encoding a model as a sequence for the LSTM.

∈ 𝐴? ∈ 𝐵? 𝑥𝑖

𝑜1 ✓ ✓ [1 0 0 0 0 1]
𝑜2 ✓ x [0 1 0 0 0 1]
𝑜3 x ✓ [0 0 1 0 0 1]
𝑜4 ✓ ✓ [1 0 0 0 0 1]
𝑜5 x x [0 0 0 1 0 1]

In the above table, the 𝑜𝑖 are the five objects of a model, presented
in that order. The next two columns indicate whether each object be-
longs to the set 𝐴 (the restrictor) or 𝐵 (the nuclear scope), respectively.
Finally, the 𝑥𝑖 column represents the input at step 𝑖 to the LSTM for
this example.

In this example, we assume that the network is being trained on
two quantifiers —every and some— and that they are ‘ordered’ in that
way. The final two dimensions of each 𝑥𝑖 encode that the desired/
intended output is the truth value of ‘some 𝐴 is a 𝐵’. When it is be-
ing asked to output the truth value of ‘every 𝐴 is a 𝐵’, the final two
dimensions will be [1 0] for each 𝑥𝑖.

Finally, the true label 𝑦 for this example will be [1 0], because
the sentence is indeed True. The truth-value False is represented by
the vector [0 1].

After the LSTM processes the sequence corresponding to a model and
quantifier, the final output is passed to a one-layer feed-forward neural net-
work with two outputs, corresponding to True and False. This output layer
has a softmax activation function, so that the resulting activations are prob-
abilities.33 Full details of the network architecture and the data generation
process will be described in the following section.

This choice of input captures some necessary features for addressing the
Challenge. If, for instance, we encoded models by the cardinalities of the
four respective sets, we would not be able to represent quantifiers that do
not satisfy Quantity. Similarly, if we did not represent all four sets but only

33 With 𝑣 a vector, softmax(𝑣)𝑖 = 𝑒𝑣𝑖/∑𝑗 𝑒𝑣𝑗 . We could use just one node, since the guess is a
probability, but having two outputs allows for easier generalization to other classification
tasks.
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the sets 𝐴∩𝐵 and 𝐴⧵𝐵, we would not be able to represent non-conservative
quantifiers.34

To complete the description of the learning model, we must specify what
loss function we will be minimizing. In tasks like ours where the output is a
probability distribution, the standard choice is cross-entropy. This function
can be seen as capturing the ‘distance’ between two probability distributions.
Or, since it’s not symmetric, the amount of ‘work’ that one would have to do
to transform a given distribution into a target one. For discrete distributions,
the general form is:

(19) 𝐸(𝑝,𝑞) = −∑𝑚
𝑖=1 𝑝(𝑥𝑖) ln𝑞(𝑥𝑖)

In our case, this takes on a particularly simple form. This is because the
target distribution 𝑝 comes from our training data, and so assigns all of the
probability to the correct truth-value, and none elsewhere. Thus, for 𝑦 ∈
{0, 1} being the correct truth-value, our local error function will be:

(20) ℓ(NN(𝜃,𝑥),𝑦) = − ln(NN(𝜃,𝑥)𝑦)

This makes good intuitive sense. Because 𝑦 is the correct truth-value,
NN(𝜃,𝑥)𝑦 is the probability that the network assigns to the correct truth-
value. When this probability equals 1 (i.e., when the network completely cor-
rectly guesses the right truth-value), then ℓ is 0. And as this probability gets
farther and farther away from 1, the loss increases. Plugging this local error
function into a gradient descent algorithm, then, means that the network will
learn to assign higher and higher probability to the correct truth-value.

4 Experiments

We are now in a position to directly address the Challenge: we have three
proposed semantic universals about quantifiers and a model of learning quan-
tifiers. We can thus ask, for each of the universals, the following question: are
expressions satisfying the universal easier to learn (by an LSTM) than those

34 We note that our choice of input, as motivated by the Challenge, explains some differences
with recent approaches to learning quantifiers with neural networks (Sorodoc et al. 2016,
Pezzelle, Marelli & Bernardi 2017, Sorodoc et al. 2018). They focus primarily on the ability of
networks to learn quantifiers from images (possibly augmented with text). We use a more
austere input to factor out tasks like image processing and syntactic parsing from the purely
semantic learning that we are interested in. Interestingly, Sorodoc et al. (2018) find that
a neural image- and language-processing architecture which first processes the restrictor
before combining it with the nuclear scope achieves superior performance.
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that do not? In this section, we present three experiments, one for each uni-
versal. Because all experiments shared the same methodology, we first de-
scribe the methods. All code for running the simulations and the data gen-
erated are available at http://github.com/shanest/quantifier-rnn-learning.

For each universal, we do the following: choose a pair of quantifiers, one
satisfying the universal and one not satisfying it. We then run some number
of trials of training an LSTM to learn those two quantifiers. Multiple trials are
needed for a robustness check since the learning is a stochastic process.35

For each trial, we measure how long it took the network to converge for each
quantifier, and compare the two, where convergence means having reached
and maintained a suitably high threshold of accuracy.36 To meet the Chal-
lenge, we hope that the networks systematically converge earlier for the
quantifier satisfying the universal.

More concretely, Algorithm 1 below depicts our data generation algo-
rithm. Essentially, a quantifier is drawn at random, and a sequence corre-
sponding to a model of a randomly-chosen size is also generated. We then
add the corresponding data point to the data set, avoiding duplicates. Fi-
nally, we shuffle the data, and balance it so that every quantifier/truth-value
pair has the same number of data points. The balancing is done by under-
sampling to the smallest class.37 We then split the generated data into a train-
ing set and a test set. In all of our experiments, the split was 70%/30%. The
algorithm has three parameters: the maximum length of a model, the number
of data points to generate, and a set of quantifiers. For all experiments, the
maximum length was 20. The other two parameters varied by experiment and
so will be reported for each. We varied the total number of data points gen-
erated for the following reason: at the end, the data is balanced so that each
quantifier/truth-value pair has the same number of data points, so that the
network does not simply learn a bias in the data. We performed this balanc-
ing by under-sampling, so that each pair ended up with the same number of
data points as the least-frequent quantifier/truth-value pair. Because differ-
ent quantifiers have a different distribution of truth-values across the space
of models (for example, most is true roughly half the time, while all is very
rarely true), we varied the total number of data points generated so that the

35 Initialization of the LSTM state and of the weights are random, as is the data generation algo-
rithm, both in exactly which input sequences get generated and the order they are presented
to the network.

36 We state our precise measure of convergence below.
37 For motivations and methods on balancing data, see He & Garcia 2009.
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Algorithm 1 Data Generation Algorithm
Inputs: max_len, num_data, quants
data ← []
while len(data) < num_data do

Choose 𝑁 uniformly at random from between 1 and max_len

Choose 𝑄 uniformly at random from quants

cur_seq ← 𝑁 randomly chosen items from
{𝐴∩ 𝐵,𝐴 ⧵ 𝐵,𝐵 ⧵ 𝐴,𝑀 ⧵ (𝐴∪ 𝐵)}
if ⟨𝑄,cur_seq⟩ ∉ data then

Add ⟨𝑄,cur_seq,cur_seq ∈ 𝑄?⟩ to data

end if
end while
shuffle(data)
balance_by_undersampling(data)
return train_split(data), test_split(data)

resulting number of data points per quantifier/truth-value pair were roughly
the same across experiments once the under-sampling was performed.

For each experiment, we ran 30 trials of learning. Our networks consisted
of two stacked LSTM cells, each with a hidden state of 12 nodes. We stopped
the model when the total loss was below 0.01, total mean accuracy for 100
training mini-batches was over 99%, or 4 epochs have passed,38 whichever
came first. We used mini-batches of size 8.39 We used the Adam optimizer40

with learning rate 10−5. All of this was implemented using TensorFlow.41

For analysis, we measured the convergence point for each quantifier: this
is the first time step where both the accuracy and the mean accuracy on the
test set from then until the end of the trial were above 95%. To see whether
one quantifier systematically converged earlier than the other, we calculated
a paired 𝑡-test on the convergence points, which is equivalent to a 1-sample

38 In machine learning, an epoch is one pass through the entire set of training data. See Nielsen
2015, ch. 1, for this and other terminology.

39 A mini-batch is how much data is used before updating the network. In standard gradient
descent, the batch is the size of the entire training data, i.e., the network only computes gra-
dients and updates after seeing all its data. Because this is costly, stochastic gradient descent
uses smaller batches. In general, the smaller the batch-size, the worse the approximation to
the total gradient, so the more chaotic learning will be.

40 Kingma & Ba 2015
41 See http://tensorflow.org and Abadi et al. 2016.
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𝑡-test on the differences between the two points. This was chosen because
within-trial difference of convergence points is more meaningful than com-
parisons across trials due to the stochastic nature of the learning process.

4.1 Monotonicity

Our first experiment tested the Monotonicity Universal. Because a quan-
tifier can be either upward- or downward-monotone, we ran one experiment
with an upward monotone quantifier and another one with a downward
monotone one. In both cases, we generated 100000 data points.

Experiment 1(a) compared at least 4— an upward-monotone quantifier,
meaning |𝐴 ∩ 𝐵| ≥ 4— with the quantifier at least 6 or at most 2— a non-
monotone quantifier meaning |𝐴∩𝐵| ≥ 6 or |𝐴∩𝐵| ≤ 2. The learning curves
for all of the 30 trials are plotted in Figure 4. Qualitatively, it appears that at
least 4 regularly converges faster than at least 6 or at most 2. The statistics
confirm this appearance. A paired 𝑡-test of the convergence points found
that at least 4 did converge statistically significantly earlier across trials (𝑡 =
−9.356, 𝑝 = 2.926 × 10−10).

Figure 4 Experiment 1(a) learning curves. The median at each step is in
bold.
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Experiment 1(b) compared at most 3— a downward-monotone quantifier,
meaning |𝐴∩𝐵| ≤ 3— with the quantifier at least 6 or at most 2. The learning
curves for all 30 trials are plotted in Figure 5. Qualitatively, it appears that at
most 3 regularly converges faster than at least 6 or at most 2. The statistics
confirm this appearance. A paired 𝑡-test of the convergence points found
that at most 3 did converge statistically significantly earlier across trials (𝑡 =
−15.253, 𝑝 = 2.182 × 10−15).

Figure 5 Experiment 1(b) learning curves. The median at each step is in
bold.

These results are very encouraging. Both upward- and downward mono-
tone quantifiers are learned significantly more quickly than a corresponding
non-monotone quantifier by an LSTM network. In the context of the present
study, this supports the argument that the Monotonicity Universal holds
because monotone quantifiers are easier to learn.

4.2 Quantity

Our second experiment tested the Quantity Universal. First, we compared
at least 3— a quantifier that is quantitative — with first 3— a quantifier that
is not quantitative because it depends on the order in which the restrictor
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is presented. In this case, we generated 200000 data points. We threw out
one trial which failed to reach high enough accuracy for both quantifiers af-
ter 4 epochs.42 The learning curves for the remaining 29 trials are plotted
in Figure 6. Qualitatively, while the separation does not look as strong as
in Experiments 1(a) and 1(b), it does appear that at least 3 converges faster
than first 3. The statistics confirm this appearance. A paired 𝑡-test of the con-
vergence points found that at least 3 did converge statistically significantly
earlier across trials (𝑡 = −7.549, 𝑝 = 4.032 × 10−8).

Figure 6 Experiment 2(a) learning curves. The median at each step is in
bold.

To test the robustness of this result and ensure that it does not reflect a
defect in our learning model, we ran a second experiment to test Quantity.43

In particular, despite having ‘memory’ in their name, it is known that LSTM
networks can in fact have trouble maintaining memory during the course
of processing long sequences.44 So it could be what drove the result in Ex-

42 This trial was close to reaching 95% test set accuracy for each quantifier, so the network was
still learning.

43 We are grateful to an anonymous referee for suggesting this confound and subsequent ex-
periment.

44 This, for instance, partially explains the significant performance boost from reversing the
source sentence in LSTM-based neural machine translation in Sutskever, Vinyals & Le 2014.
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periment 2(a) was not a general feature of the learning model, but rather a
difficulty in maintaining a memory of the early part of the sequence, to which
first 3 is sensitive. Because of this, we ran a second experiment using last 3
instead of first 3: this quantifier exhibits the same order-dependency as first
3 but places less demands on the model’s memory of early parts of a long se-
quence. The learning curves are plotted in Figure 7. Qualitatively, the pattern
continues to hold and in fact may be stronger: at least 3 appears to converge
much faster than last 3. The statistics confirm this appearance. A paired
𝑡-test of the convergence points45 found that at least 3 did converge statis-
tically significantly earlier across trials (𝑡 = −26.453,𝑝 = 7.459 × 10−22).

Figure 7 Experiment 2(b) learning curves. The median at each step is in
bold.

These results, like those before, are encouraging. We have now seen a
second universal — the Quantity Universal — where a quantifier satisfy-
ing the universal is learned more easily by an LSTM network than one that
does not. That this pattern has been observed for two very prominent uni-
versals also lends support to the general argument of which the Challenge

45 For this experiment, we lowered the threshold to 93%, since many trials did not quite reach
95% accuracy for last 3.
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is a missing piece: in general, a universal may hold because expressions sat-
isfying it are easier to learn and such expressions are more likely to be lexi-
calized.

4.3 Conservativity

Our third and final set of experiments focused on the Conservativity Uni-
versal. Before presenting the results, we note that Conservativity appears
somewhat different from the previous two universals. While the former two
impose robust patterns on the distribution of truth-values for quantified sen-
tences across the space of models, the present universal simply says that
one ‘zone’ of a model — namely, 𝐵 ⧵ 𝐴— is irrelevant. In terms of our learn-
ing model, conservativity simply entails that one of the four symbols in the
input alphabet will never effect the truth-value (i.e., the classification label);
but the patterns of the remaining symbols in the sequences can be of any
kind. Because of this difference, there exists prima facie reason to doubt
that the model will distinguish conservative from non-conservative quanti-
fiers. We now present two experiments as a kind of ‘sanity check’, exhibiting
that this is in fact the case. After so doing, we conclude with a brief discus-
sion of ways the model can be extended to possibly tease apart conservative
and non-conservative quantifiers and a positive proposal about the different
source of this universal.

First, we compared not all— a conservative quantifier meaning that 𝐴 ⊈
𝐵— with not only— a non-conservative quantifier meaning that 𝐵 ⊈ 𝐴. We
chose these two quantifiers following Hunter & Lidz (2013), who taught chil-
dren to learn a new determiner, gleeb or gleeb’. The former —gleeb— meant
not all, while the latter meant not only. They found that children learned
the meaning of gleeb faster than that of gleeb’, suggesting that conservative
quantifiers are easier for children to learn.

In this experiment, we gathered 300000 data points. The learning curves
for all of the 30 trials are plotted in Figure 8. Qualitatively, there does not
appear to be any significant separation in the learning curves for the two
quantifiers. The statistics confirm this appearance. A paired 𝑡-test of the con-
vergence points found that neither quantifier converged significantly earlier
than the other (𝑡 = 1.098, 𝑝 = 0.281).

As expected, not all and not only were learned equally quickly. The prima
facie intuition in the above can be made more precise in this case: the former
says that 𝐴 ⊈ 𝐵, i.e., that some 𝐴⧵𝐵 appears in the sequence; the latter says
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Figure 8 Experiment 3(a) learning curves. The median at each step is in
bold.

that 𝐵 ⊈ 𝐴, i.e., that some 𝐵 ⧵ 𝐴 appears in the sequence. Because 𝐴 ⧵ 𝐵 and
𝐵 ⧵ 𝐴 are simply different labels in our sequences, the two quantifiers are
equivalent at a certain level of generality. The network needs to recognize
only one ‘pattern’ — non-emptiness — and learn which character it applies to
for which quantifier.

We ran a second experiment, with two quantifiers that are not quite so
intimately related. We compared most— with the meaning |𝐴∩𝐵| > |𝐴⧵𝐵|—
to an invented non-conservative quantifier M, with the meaning |𝐴| > |𝐵|.46

The learning curves for all 30 trials are plotted in Figure 9. Qualitatively, there
does not appear to be any significant separation in the learning curves for
the two quantifiers. The statistics confirm this appearance. A paired 𝑡-test of
the convergence points found that neither quantifier converged significantly
earlier than the other (𝑡 = 0.762,𝑝 = 0.452).

These results again pass our sanity check: the model cannot distinguish
a conservative from a non-conservative quantifier. The situation is partially
analogous to the first experiment: because |𝐴| > |𝐵| is equivalent to |𝐴⧵𝐵| >

46 See Keenan & Westerståhl 1997, from whence the name M comes. We thank an anonymous
referee for suggesting that we test these two quantifiers.
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Figure 9 Experiment 3(b) learning curves. The median at each step is in
bold.

|𝐵⧵𝐴|, the network again needs to only learn one pattern, but attach different
pairs of labels to it for most and M. The situation is, however, also partially
dis-analogous: because both quantifiers depend on 𝐴 ⧵ 𝐵 but only the latter
depends on 𝐵 ⧵ 𝐴, the result could have been different. That these two pat-
terned with not all and not only is then a welcome null result, strengthening
the robustness of our sanity check.

In total then, our model at present cannot meet the Challenge when it
comes to the Conservativity Universal. That being said, there are ways
of enriching the present setup in ways that may help. In particular, our min-
imal pair methodology may be a limiting factor. In particular, since neural
networks are known to learn to reflect biases in the data that they are trained
on,47 it is possible that biasing the data by including more conservative quan-
tifiers than non-conservative ones could make the former easier to learn than
the latter. We leave this possibility to future work.

While it thus remains possible that the present model could be enriched
so as to make conservative quantifiers easier to learn, we contend that the
prima facie argument at the beginning of this section and our subsequent

47 See, among others, Bolukbasi et al. 2016, Buolamwini & Gebru 2018.
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sanity checks may point to something deeper than a limitation in the cur-
rent learning model: they could indicate that the source of the Conserva-
tivity Universal differs from that of the other two universals. In particular,
a growing number of researchers argue that conservativity is not a constraint
on which quantifiers are lexicalized as determiners but is rather an artifact
of the syntax-semantics interface.48 For this reason, many authors develop
a so-called structural explanation of conservativity. While the details of the
proposals need not concern us here, the key idea can be explained: while
determiners in principle could denote non-conservative quantifiers, the way
that the syntax-semantics interface constructs sentence meanings49 renders
any sentence with a non-conservative determiner truth-conditionally equiva-
lent to a sentence with a conservative determiner.50 Although nothing in the
present paper constitutes an argument for a structural account of conserva-
tivity, our null results fit very nicely with such an account: if conservativity
ultimately arises as a product of the syntax-semantics interface, it will not
be a constraint on the lexicon and so we should not expect its source to be
semantic learnability at all.51 This universal would then fall outside the do-
main of the Challenge, and so the inability of our model to meet it should
not be surprising.52

5 Discussion

In total, our results go a long way in meeting the Challenge: the quanti-
fiers in our experiments that satisfy monotonicity and quantity are easier to
learn in our model than those that do not. Moreover, although a conservative
quantifier is not easier to learn than a non-conservative one, we argued that
there are independent reasons to expect the source of that universal to be
different than the first two. In this discussion section, we clarify the nature
of our argument by discussing three possible objections: that we study non-

48 See Fox 2002, Sportiche 2005, Romoli 2015 for accounts of this type.
49 The key ingredient here is the copy theory of movement.
50 Strictly speaking, such sentences might also be trivial. For this reason, Romoli (2015) as-

sumes that trivial meanings are blocked.
51 We also should not expect a structural account to be sensitive to the distinction between

simple and complex determiners. As noted earlier, this universal often does get stated in
terms of all determiners, reflecting that it may not be a constraint on the lexicon.

52 We note that it remains unsolved how to account for ‘only’ and reverse-proportional ‘many’
on this structural account of conservativity. Perhaps this provides more reason for arguing
that those are not in fact determiners. See footnote 21.
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lexicalized quantifiers, that a notion of semantic complexity really drives the
results, and that our learning model is unrealistic.

First, one may feel uneasy that in some of our experiments, the quanti-
fier satisfying the proposed universal appears not to be lexicalized in any
language. This holds for not all and at most 3.53 First, we note that even
though no specific quantifier at most n is lexicalized, cardinal few is contex-
tually equivalent to some such quantifier. More importantly, however, our
argument only delineates the class of quantifiers that are candidates for lex-
icalization. That is to say, we intend to put upper bounds on what quanti-
fiers simple determiners can denote, but not to exactly demarcate the set
of quantifiers denoted in every language. Because exactly which quantifiers
satisfying a given universal are denoted by simple determiners varies across
language,54 our goal has been to show merely that quantifiers satisfying the
universal are easier to learn and so are better targets for lexicalization.

Second, one might argue that what really explains the universals is a no-
tion of ‘semantic complexity’, together with the thesis that simple expres-
sions tend to denote less complex meanings. At an intuitive level, this seems
to make the same predictions as our results. at least 6 or at most 2, being
a disjunction of an upward and a downward monotone quantifier, is more
complex than both at least 4 and at most 3. Similarly, first 3, which requires
checking that no 𝐴 ⧵ 𝐵 is observed before three 𝐴∩ 𝐵 are, can be argued to
be more complex than at least 3, which only needs to look at 𝐴 ∩ 𝐵. And,
as discussed in the preceding section, not all and not only appear to be of
equal complexity. Perhaps, then, complexity is the fundamental notion that
explains the universals, either by itself explaining learnability or indepen-
dently.

We present two responses to this line of thought, both hinging on the
importance of moving beyond an intuitive notion of semantic complexity
to a precise and robust one. On the one hand, because no such notion has
been developed and finding one will be difficult, one can view learnability
by a recurrent neural network as a kind of operationalization of semantic
complexity. That is to say: the best notion of complexity that we have on

53 If one thinks bare numerals only have an ‘exactly’ interpretation, then at least 4 would also
not be lexicalized. Because, however, it’s common to have bare numerals denote at least n
and to derive the exactly n interpretation pragmatically, we consider it a candidate to be
lexicalized.

54 See Keenan & Paperno 2012 and Paperno & Keenan 2017 for the state-of-the-art knowledge on
cross-linguistic patterns in quantifiers. Katsos et al. 2016 is a study of quantifier acquisition
cross-linguistically.
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hand right now just is our notion of learnability. So until an independent
and robust general definition of semantic complexity appears, it will be hard
to tease apart whether complexity or learnability is more fundamental in the
explanation of semantic universals.

On the other hand, there will be difficulties in developing such a notion.
First, while the application of tools from computational complexity theory
to the semantics of quantifiers have motivated plausible cognitive models,55

these tools do not make sufficiently fine-grained distinctions to explain the
universals we are interested in. So consider, again, the intuitive explanation
for why our monotone quantifiers are simpler than the non-monotone ones:
the latter are disjunctive, while the former are not. And certainly disjunctive
quantifiers will be more complex than non-disjunctive ones. This suggests
that something like description length in a mental representation language
captures semantic complexity.56 But, as has been known for a long time, what
counts as simple according to measures like this depends on what the prim-
itives are.57 As an example, consider the non-monotone quantifier exactly n.
This is equivalent to at least n and at most n, and so could be argued to be
more complex. But that’s only if the latter two quantifiers are more primitive.
After all, at least n is equivalent to exactly n or more than n. None of these
considerations entail that no notion of semantic complexity can be given;
rather, they point to difficulties that will need to be overcome if the intuition
is to be made precise. We would welcome a proposal that does overcome
these difficulties.

Finally, one can worry that our model of learning does not resemble the
sort of learning that children do when learning the meanings of expressions
in natural language. The most fundamental worry here concerns the fact that
children tend to learn from positive examples, whereas our model requires

55 See, e.g., McMillan et al. 2005, Szymanik & Zajenkowski 2010. Szymanik (2016) presents and
discusses much of this work.

56 See Tenenbaum et al. 2011 for an overview. Piantadosi, Goodman & Tenenbaum (2013) ap-
plies the framework to quantifier learning, though with different motivations. Kemp & Regier
(2012) uses description length in grammars to explain universal properties of kinship sys-
tems in language. Feldman (2000) shows that Boolean complexity of binary feature concepts
correlates with their ease of learning.

57 See, for instance, the New Riddle of Induction in Goodman 1955, where it is noted that
‘green’ and ‘blue’ become definable if ‘grue’ and ‘bleen’ are taken as primitives. The paper
Piantadosi, Tenenbaum & Goodman 2016 is an attempt to explain exactly what the primitives
are in language-of-thought models.
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an even balance of positive and negative examples.58 It is true that, ceteris
paribus, one would like a model of learning as close to what is known about
the acquisition of quantifiers as possible. Minimally, however, the work pre-
sented here stands as a proof of concept: our Challenge was to provide
a model of learning on which quantifiers satisfying universals are easier to
learn than those that do not. We have succeeded on that front and, to that
end, demonstrated that the Challenge is not in principle unsolvable. Fur-
thermore, while the exact details of our model may diverge from the best
models of acquisition, we do find it plausible that there will be ‘cross-model’
transfer: the features that make, for instance, monotone quantifiers easier to
learn for our model than non-monotone quantifiers are likely to make them
easier to learn for other models as well.

6 Conclusion

Let us take stock. In this paper, we have been developing a particular kind of
answer to the question about the origin of semantic universals. According to
this answer, such universals arise because expressions satisfying the univer-
sal are easier to learn than those that do not. This results in a Challenge:
develop a model of learning on which the former claim holds. In this paper,
we have done just that. In particular, we have shown how to train a long
short-term memory neural network to learn to verify quantified sentences
and explored three semantic universals for quantifiers: monotonicity, quan-
tity, and conservativity. For the first two universals, our model adeptly meets
the challenge: monotone and quantitative quantifiers are learned faster than
those that do not. This does not hold true for conservativity; but there are
independently motivated arguments to suggest that conservativity has a dif-
ferent source than the other universals.

While these results constitute a promising answer to the Challenge,
future work can extend in several different directions. Firstly, we can con-
duct more and larger experiments. For example, instead of our minimal pair
methodology, one would like to train a single network to learn a significantly
wider range of quantifiers, using the semantic properties of the quantifiers
as predictors for the rate of learning. Technical limitations prevent this ap-
proach currently. Secondly, one would like to develop tools to ‘look inside’
the black box of our trained networks and see how they actually operate.

58 Note that here a positive example is not explicitly a grammatical sentence, but a pairing of
a sentence with a scenario in which it is true.
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For example, is there a sense in which they learn to verify quantifiers in a
way analogous to semantic automata,59 which are computational devices for
verifying quantifiers? Thirdly, similar experiments could be run for other se-
mantic universals, both within the quantifier domain and in other linguistic
domains.60 As an example, convexity of denotations for nouns and adjectives
seems robust and mirrors monotonicity for quantifiers.61 More concretely,
see Steinert-Threlkeld 2020 for a similar approach to explaining a semantic
universal about responsive verbs. Finally, recall that the general structure of
our learnability argument depends on a linking hypothesis: expressions that
are easier to learn are more likely to be lexicalized. One would like to embed
our neural networks inside of explicit models of language evolution to also
corroborate this hypothesis. We hope to pursue all of these avenues in future
research.
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