
Semantics & Pragmatics Volume 13, Article 14: 1–48, 2020
https://doi.org/10.3765/sp.13.14

Compositional trace conversion*

Robert Pasternak
Leibniz-Center for General

Linguistics (ZAS)

Submitted 2020-04-17 / First decision 2020-06-24 / Revision received 2020-08-28 /
Accepted 2020-09-09 / Published 2020-11-09 / Final typesetting 2022-06-28

Abstract In order to eliminate traces as stipulated grammatical objects,
syntactic movement has been reformulated in terms of multiple-merge: it
is the result of the same constituent being merged into the structure multi-
ple times, using either copies or multidominance structures. In spite of their
empirical and conceptual advantages, multiple-merge theories pose known
challenges for the semantic interpretation of movement, as there are no
variable-denoting traces in lower positions. The most common means of re-
solving this conundrum is trace conversion (Fox 2002, 2003), in which either a
syntactic operation makes alterations at lower merge sites in order to gener-
ate trace-like interpretations, or the semantics behaves as if such a syntactic
operation had occurred. In this paper I discuss problems faced by presently
formulated versions of trace conversion and propose an alternative, compo-
sitional trace conversion, in which multiple-merge structures can be directly
interpreted in a straightforwardly compositional manner. This approach is
shown to generalize well, extending to modals and degree phrases as well
as DPs.

Keywords:

scope, copy theory, multidominance, trace conversion, quantifiers, modals, compar-
atives, compositionality

* For helpful discussion, many thanks to Patrick Elliott, Michael Yoshitaka Erlewine, Kai von
Fintel, Nicholas Fleisher, Thomas Graf, Itamar Kastner, Uli Sauerland, Giorgos Spathas, and
audiences at the ZAS Semantics and Pragmatics Reading Group, the University of Göttin-
gen’s Oberseminar English Linguistics, and the LSA 2020 Annual Meeting. Comments from
Kjell Johan Sæbø and three anonymous reviewers were extremely valuable. Special thanks to
Patrick Elliott for many long and fruitful conversations in the early stages of this project. All
remaining errors are mine. This research is funded by DFG Grant #387623969 (DP-Border,
PIs: Artemis Alexiadou and Uli Sauerland).

©2020 Robert Pasternak
This is an open-access article distributed under the terms of a Creative Commons Attribution
License (https://creativecommons.org/licenses/by/3.0/).

http://semprag.org/
https://doi.org/10.3765/sp.13.14
https://creativecommons.org/licenses/by/3.0/


Robert Pasternak

1 Introduction

For much of the history of generative syntax, displacement—the apparent
tendency for constituents to simultaneously occupy multiple syntactic loca-
tions—has been cast in terms of movement: a constituent seems to occupy
multiple locations because it starts in one spot andmoves to another, leaving
a trace. For example, consider (1) on its inverse scope (every > a) interpreta-
tion:

(1) A student likes every teacher.

Here every teacher seems to simultaneously occupy both its overt position
as the internal argument of like, and a higher position at which it outscopes
a student. This is typically explained through quantifier raising (QR): every
teacher covertly moves past a student, leaving a trace that is interpreted as
a bound variable argument to like:

(2) [TP every teacher 𝜆2 [TP a student 𝜆1 T [VP t1 like t2]]]

However, the existence of traces as a distinct kind of syntactic object has
come under fire in the past couple of decades. Traces have several seemingly
undesirable properties, including that (i) they are stipulated as part of the
language faculty instead of being derived from prior principles; (ii) they are
non-lexical objects inserted into syntactic computations;1 and (iii) their in-
sertion is countercyclic, since they are placed in locations vacated by moving
constituents. For these and other reasons, one aim of the Minimalist Program
(Chomsky 1995) has been to do away with traces, and to derive those empiri-
cal facts normally attributed to them from other grammatical operations and
principles whose core motivations are clearer.

Researchers have mostly coalesced around a single broad strategy for
accomplishing this. We know that some sort of structure-building opera-
tion—what Chomsky (1995) calls Merge— is needed to generate syntactic
structures to begin with, meaning that this structure-building operation can
be taken for granted as part of the language faculty. So what if, when some
constituent X undergoes “movement”, X is in fact simply merged back into
the structure again, this time at a higher point in the tree? This eliminates the
need for traces and the stipulations that come with them: displacement is not
movement-plus-trace-insertion, but rather a single constituent appearing in
multiple syntactic locations, by means of an operation that is independently

1 By “lexical objects” I do not mean to evoke the distinction between lexical and functional
heads, but rather to refer to anything stored in the lexicon.

14:2



Compositional trace conversion

motivated on basic conceptual grounds. I will refer to analyses in this broad
program as multiple-merge theories of movement.

Under the multiple-merge umbrella, two main candidate theories have
emerged. The first is the copy theory of movement (Chomsky 1995), in which
a “moving” constituent is simply copied, with the newly created copy merged
at the destination of movement. Thus, the trace-laden LF in (2) might be re-
placed with (3):2

(3) [TP every2 teacher 𝜆2 [TP a1 student 𝜆1 T [VP a1 student like every2
teacher]]]

The second approach is the multidominance theory of movement (Starke
2001, Gärtner 2002, Johnson 2012). According to multidominance theories,
it is possible for a single constituent to have multiple mothers, and this is
precisely the configuration that arises in the case of movement: when con-
stituent X moves from below Y to the specifier of ZP, no copies are made,
and instead we end up with a structure in which X has both Y and ZP as
mothers. In other words, rather than having two indistinguishable copies of
X, it is quite literally the same constituent that sits in both positions. Thus,
the translation of the LF in (2) into the multidominance theory of movement
will look like Fig. 1.

In spite of their empirical and conceptual advantages, multiple-merge
theories pose well-known challenges for traditional approaches to semantic
composition. A common means of interpreting LFs like (2) is to treat traces
as denoting variables bound by the lambda-abstracting nodes 𝜆1 and 𝜆2, gen-
erating predicates that serve as arguments to their respective quantifiers
(Heim & Kratzer 1998). But this view of compositionality seems untenable
in the face of LFs like (3) and Fig. 1, as it would require that a DP be inter-
preted as a true quantifier at its highest merge site, and as a bound variable
at lower merge sites. Put another way, there is an apparent tension between

2 Since I eventually adopt the syntax in (3) for my own semantic analysis, a note on syntactic
assumptions is in order. I assume that indices are semantically interpretable features that a
constituent (e.g., DP) inherits from its head (D), and that when movement occurs, a lambda-
abstractor is inserted that is co-indexed with the moving constituent, or equivalently, with
its head. On multiple-merge theories this also means that the lambda-abstractor will be co-
indexed with the “trace” (the lower iteration of the DP), as in traditional semantic analyses
like Heim & Kratzer 1998. Finally, I assume that distinct operators are assigned distinct
indices, though assigning multiple operators the same index could be an intriguing way to
analyze across-the-board movement (cf. Fox & Johnson 2016). Whether lambda-abstractors
can be inserted without being triggered by movement is an issue left for future work. For
further discussion of issues related to indices and lambda-abstractors, see Section 6.

14:3



Robert Pasternak

TP

TP

T′

VP

V′

DP2

teacherevery2

like

DP1

studenta1

T

𝜆1

𝜆2

Figure 1 Multidominance LF for inverse scope of A student likes every
teacher.

the following principles of semantic interpretation: (i) a quantificational DP
introduces quantification at its highest merge site; (ii) quantificational DPs
do not introduce quantification at lower merge sites, and are interpreted as
bound variables; and (iii) structurally identical DPs are semantically identi-
cal, regardless of whether it’s two indistinguishable copies (copy theory) or
the same DP interpreted at multiple merge sites (multidominance).

The most commonly adopted means of dissolving this tension is trace
conversion, proposed by Fox (2002, 2003) within the confines of the copy
theory of movement. Trace conversion is a post-syntactic operation that re-
places lower copies of determiners with bound definite determiners:3

(4) (3) after trace conversion:
[TP every2 teacher 𝜆2 [TP a1 student 𝜆1 T [VP the1 student like the2
teacher]]]

We can then posit that the denotation of the𝑛, evaluated with respect to a
variable assignment 𝑔, takes a predicate 𝑃 and returns 𝑔(𝑛) if 𝑔(𝑛) is a 𝑃,

3 The particular implementation adopted here is that of Sauerland (2004). Differences between
this and Fox’s version are important, but not for the purposes of the argumentation in this
paper.

14:4



Compositional trace conversion

and is otherwise undefined. In other words, Jthe𝑛K(𝑃) denotes a restricted
variable:

(5) Jthe𝑛K𝑔 = 𝜆𝑃 ∶ 𝑃(𝑔(𝑛)). 𝑔(𝑛)

For example, Jthe1 studentK𝑔 denotes 𝑔(1) iff 𝑔(1) is a student (and is other-
wise undefined), and Jthe2 teacherK𝑔 denotes 𝑔(2) iff 𝑔(2) is a teacher. Hence,
replacing a1 student and every2 teacher with the1 student and the2 teacher
permits precisely the sort of bound variable reading required for success-
ful composition. An alternate version of trace conversion, mentioned as a
possibility by Fox (2003), shifts the burden from the syntax to the seman-
tics: there is no syntactic operation that modifies lower copies, but instead
the compositional semantics interprets multiple-merge structures as if some
such syntactic operation had taken place.

In Section 2 I discuss a specific semantic prediction of trace conversion:
when a DP undergoes movement, its NP restrictor semantically contributes
not only at the DP’s highest merge site, but also at its lower merge sites in the
form of a domain restriction. I will also briefly discuss some empirical argu-
ments that have been made in favor of this hypothesis, and thus in favor of
multiple-merge over trace-based theories of movement. However, in Section
3 I go over some critical downsides to trace conversion, based on a mixture
of empirical observations, theory-internal considerations, and broader prin-
ciples of theoretical simplicity and elegance. In brief, syntactic trace conver-
sion is difficult to motivate on independent syntactic grounds and requires
abandoning well-motivated syntactic principles (namely, Chomsky’s (1995)
Inclusiveness Condition), as well as additional stipulations to account for non-
DP scope-taking. Meanwhile, semantic trace conversion runs afoul of basic
principles of semantic compositionality, since the same DP must be inter-
preted differently in different locations. The goal in the rest of the paper
will be to retain the benefits of trace conversion without these downsides.

In Section 4 I turn to my own analysis, which I refer to as compositional
trace conversion, and which allows LFs like (3) and Fig. 1 to be interpreted
compositionally and without syntactic modifications. Put simply, the seman-
tic impact of trace conversion—that is, the “swapping out” of a quantifi-
cational interpretation for a bound definite interpretation at lower merge
sites— is automatically triggered by the operation of lambda abstraction. In
Section 5, I show how the analysis can easily be type-generalized and thus ex-
tended beyond DP quantification, accounting for the scope-taking behavior

14:5



Robert Pasternak

of both modals and degree phrases in comparatives. I offer some concluding
remarks and lines for potential future research in Section 6.4

2 The Interpreted Lower Restrictor Hypothesis

Before discussing the downsides to trace conversion, it is worth going over
one of its positives. Consider again the post-trace-conversion LF in (4). As
discussed previously, the1 student denotes a restricted variable: 𝑔(1) iff 𝑔(1)
is a student, and otherwise undefined. Likewise for the2 teacher :

(6) Jthe1 student like the2 teacherK𝑔 is defined iff student(𝑔(1)) and
teacher(𝑔(2)).

Where defined, Jthe1 student like the2 teacherK𝑔 = like(𝑔(1),𝑔(2))

Because the1 student denotes a restricted variable, when we lambda-abstract
over that variable we get a predicate whose domain is restricted to students:

(7) J𝜆1 the1 student like the2 teacherK𝑔 is defined iff teacher(𝑔(2)).
Where defined, J𝜆1 the1 student like the2 teacherK𝑔 =

𝜆𝑥 ∶ student(𝑥). like(𝑥,𝑔(2))

In other words, because of the definition of Jthe𝑛K𝑔, we predict NP restric-
tors in the “traces” of DP movement to make semantic contributions in the
form of domain restrictions. I will call this the Interpreted Lower Restrictor
Hypothesis (ILRH):

(8) Interpreted Lower Restrictor Hypothesis (ILRH):
When a DP of the form [DP D NP] undergoes movement, NP is also
semantically interpreted at the trace position, so that after lambda
abstraction the resulting predicate is restricted to individuals in JNPK.

Several empirical arguments have been offered in favor of ILRH. For example,
Erlewine (2014) provides evidence from association with focus— in short, it
seems that focus-sensitive operators can associate with focused material in-
side of traces—and Romoli (2015) follows Chierchia (1995), Fox (2002), and

4 For reasons of space I cannot discuss other attempts at a Minimalism-friendly seman-
tics, which make more fundamental revisions to traditional assumptions about the syntax-
semantics of quantification. These include Gotham’s (2018) LF-less “Glue semantic” ap-
proach, as well as the analyses of Johnson (2012) and Fox & Johnson (2016) in which QR does
not involve movement of quantificational heads. Comparing these theories is of course im-
portant work; my analysis can be thought of as an attempt to bring the traditional approach
closer to its best form in order to facilitate such comparisons.

14:6



Compositional trace conversion

Sportiche (2005) in using ILRH to account for the famed conservativity hy-
pothesis (Barwise & Cooper 1981, Keenan & Stavi 1986). However, to keep
things brief I will only discuss ILRH in relation to the treatment by Sauerland
(1998, 2004) of certain puzzling facts pertaining to antecedent-contained
deletion (ACD), augmented by Fox’s (2002) proposal connecting ACD to ex-
traposition. This choice is motivated by two factors: the empirical puzzle
provides particularly compelling evidence for ILRH, and going over the anal-
ysis will help illustrate some key concepts that will prove useful in later dis-
cussion.

2.1 Setting the table: ACD and the Kennedy-Sauerland Puzzle

Antecedent-contained deletion refers to ellipsis sites that, at least by appear-
ances, are contained within their own antecedents. Consider (9):

(9) Lisa read every book that Anna did.

The elided VP is inside the relative clause, and its antecedent is the matrix
VP. The apparent containment of the ellipsis within its own antecedent is
illustrated in (10):

(10) Lisa

antecedent

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[VP read [DP every book that Anna did [VP Δ]⏟⏟⏟
ellipsis

]]

If the ellipsis is truly contained within its own antecedent, this poses an
apparent problem: the ellipsis and antecedent VP cannot match without an
infinite regress. To avoid this, traditional accounts of ACD posit that the DP
headed by every QRs outside of the VP (Sag 1976, May 1985):

(11) [DP every1 book that Anna did [VP Δ]] 𝜆1 Lisa [VP read t1]

With the ellipsis site no longer contained within its antecedent, ellipsis res-
olution can be achieved without any infinite regress.

The empirical evidence for ILRH that we will be discussing comes from
a particular puzzle concerning ACD, which I will call the Kennedy-Sauerland
Puzzle:

(12) Kennedy-Sauerland Puzzle (Sauerland 2004: p. 64):
a. * Polly visited every town that is near the lake Erik did.
b. Polly visited every town that is near the one Erik did.

14:7



Robert Pasternak

The first half of the puzzle, initially observed by Kennedy (1994), is the ill-
formedness of (12a). This sentence is well-formed without the VP ellipsis,
indicating that its ill-formedness is due specifically to a lack of ellipsis li-
censing.

(13) Polly visited every town that is near the lake Erik visited.

But on traditional analyses there is no reason to suspect that (12a) should be
ill-formed: in the LF in (14), the ellipsis is outside of its antecedent, just as it
is in (11).

(14) [DP every1 town that is near the lake Erik did [VP Δ]]
𝜆1 Polly [VP visited t1]

The second half of the puzzle, noted by Sauerland (1998, 2004), is the fact
that (12b)— identical to (12a) except that lake is replaced by one—is well-
formed. This indicates that whether or not ellipsis is licensed in examples like
(12) must be sensitive to the choice of noun that the most deeply embedded
relative clause adjoins to (lake vs. one), an even stranger result on traditional
analyses.

Sauerland (1998, 2004) offers an account of this puzzle that hinges on
ILRH. But before going into the specifics of Sauerland’s solution, it will help
to first go over a particular proposal by Fox (2002) connecting ACD to extra-
position.

2.2 Fox 2002 and the ACD-extraposition connection

Fox (2002) follows Baltin (1987) in arguing that ACD necessarily involves (of-
ten string-vacuous) extraposition, the same process separating the relative
clause from book in (15):5,6

(15) I read [every book] yesterday [that John had recommended].

He adopts Fox & Nissenbaum’s (1999) analysis of extraposition, which cru-
cially relies on multiple-merge. An important empirical observation about ex-
traposition is what Fox refers to as Williams’s Generalization (after Williams
(1974)), which states that any scope-taker must scope at least as high as any

5 For arguments against Baltin’s analysis, see Larson & May 1990. See Fox 2002 for counterar-
guments.

6 Fox & Nissenbaum (1999) note that both nominal arguments and adjuncts can undergo extra-
position. However, argument and adjunct extraposition seem to be two distinct processes;
the empirical findings and analysis under discussion are specific to adjunct extraposition.

14:8



Compositional trace conversion

adjunct extraposed from it. An illustration of Williams’s Generalization can
be seen in (16):

(16) Illustration of Williams’s Generalization (Fox 2002: p. 72):
a. I read every book that John had recommended before you did.
b. I read every book before you did that John had recommended.

The extraposition-less (16a) is ambiguous. If every scopes below before, the
resulting interpretation is that I was the first to make my way through John’s
list, though certain books you might have finished first. If every outscopes
before, the interpretation is stronger: each book was finished by me first. But
(16b), in which the relative clause is extraposed past before, is unambiguous,
and only the latter reading is available.

In their analysis of extraposition, Fox &Nissenbaum (1999) follow Lebeaux
(1990) in positing that adjuncts can be late merged, i.e., adjoined to the con-
stituent they modify after that constituent has already merged into a larger
structure and undergone movement. Fox & Nissenbaum further propose that
late merger can occur after QR, and that this is what happens in the case of
extraposition. In (16b), for example, every book QRs past the before-phrase,
with the relative clause adjoining to the higher, unpronounced copy of book.
If QR is stipulated to be rightward, this generates the correct word order:

(17) [I read [every1 book] before you did] [every1 book that John…]

Importantly, by tying extraposition to QR in this fashion, Williams’s Gener-
alization can be accounted for. After all, in order to generate the extraposed
structure, every book had to QR past the before-phrase. Trace conversion
then converts this structure into one that is semantically interpretable, and
the interpretation is one in which every outscopes before:

(18) [𝜆1 I read the1 book before you did] [every1 book that John …]

Therefore, Fox & Nissenbaum (1999) rightly predict that the only way to
generate the string in (16b) is by means of a structure in which every book
outscopes the before-phrase, thereby eliminating the ambiguity seen in (16a).

Fox (2002) proposes that this analysis of extraposition be extended to
ACD examples like (9): the ellipsis-containing relative clause is late merged
after QR, leading to (string-vacuous) extraposition and the approximate LF
structure seen in (19), with gaps to be filled in shortly:

(19) [𝜆1 Lisa read the1 book] [every1 book that Anna did Δ]

14:9



Robert Pasternak

Note that on this analysis “antecedent-contained deletion” is in fact a mis-
nomer: since the relative clause containing the ellipsis is late merged after
QR, there is actually no point at which the ellipsis is contained within its
antecedent.

Many of Fox’s arguments for connecting ACD to extraposition in this man-
ner are beyond the scope of this paper. However, one such argument comes
precisely from its utility when combined with Sauerland’s (1998, 2004) ac-
count of the Kennedy-Sauerland puzzle, to which we now turn.

2.3 Resolving the Kennedy-Sauerland Puzzle

Sauerland’s solution to the Kennedy-Sauerland puzzle needs two additional
ingredients. First, we adopt a PF deletion theory of ellipsis, in contrast to an
LF copying theory: an ellipsis site is not an empty constituent that is subse-
quently “filled in” at LF, but a fully syntactically realized constituent that can
be erased at PF under certain conditions. As for what these conditions are,
Sauerland follows Rooth (1992) and Fox (1999) in connecting ellipsis licens-
ing to contrastive focus. However, for our purposes we can adopt a simpler
picture: antecedent X can license the ellipsis of Y only if X and Y are seman-
tically identical, modulo indexation. Thus, see herself1 and see herself2 count
as sufficiently similar, but not see her1 friend and see her1 enemy.

Second, Sauerland proposes a matching analysis of relative clauses: in
an NP with an adjoined relative clause like lake that Erik visited, the head
noun lake also occurs inside the relative clause. More specifically, the inter-
nal argument of visit is saturated by the DP Op lake, where Op is a wh-like
determiner analogous to which. This DP then undergoes movement to the
left periphery of the relative clause, whereupon its noun is deleted under
identity with the adjoined-to lake:

(20) [NP lake [CP [DP Op1 lake] 𝜆1 that Erik visited [DP Op1 lake]]]

After trace conversion this NP will look as in (21) at LF. For convenience I
ignore the higher merge site of Op lake, since how it is or is not integrated
into the compositional semantics is not relevant for the present discussion.
(However, see Section 5.3 for some discussion of the relevance of this issue
to the theory proposed in this paper.)

(21) [NP lake [CP 𝜆1 that Erik visited the1 lake]]

Thus, by combining multiple-merge, ILRH, and the matching analysis of rel-
ative clauses we predict that the semantic interpretation of the head noun

14:10



Compositional trace conversion

should also be visible inside the relative clause, in the form of a domain re-
striction.

This can then be combined with Fox’s (2002) extraposition-based analysis
of ACD, leading to the post-trace-conversion LF for (9) shown in (22):

(22) [𝜆1 Lisa read [the1 book]]
[every1 book [(Op2 book) 𝜆2 that Anna read the2 book]]

Notice that the antecedent (read the1 book) and the ellipsis site (read the2
book) are indeed semantically identical modulo indexation. Hence, we rightly
predict the availability of ellipsis and the grammaticality of (9).

By adopting these assumptions, the Kennedy-Sauerland facts in (12) fall
out immediately. Let us start with the ill-formed (12a), which we predict to
have the following post-trace-conversion LF:

(23) [𝜆1 Polly

antecedent

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞visited the1 town]
[every1 town (Op2 town) 𝜆2 that the2 town is near

[the lake (Op3 lake) 𝜆3 Erik visited the3 lake⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
*elided

]]

This is a perfectly well-formed LF structure, hence (13). However, ellipsis is
not licensed. The antecedent visited the1 town is not semantically identical
to the elided visited the3 lake, regardless of indexation: the former has an
argument saturated by a variable restricted to towns, while the latter has an
argument saturated by a variable restricted to lakes. So (12a) is ill-formed.

(12b), meanwhile, will have the same LF structure, but replacing lake with
one. Regardless of whether one thinks of one as an NP pronoun anaphoric to
town or as an instance of town that is converted to one at PF, it is clear that
in this example JoneK = JtownK. Hence, the antecedent visited the1 town and
the elided visited the3 one are semantically identical modulo indexation— in
both, the internal argument is saturated by a variable restricted to towns—
and ellipsis is licensed in (12b).

Notice that ILRH is critical to this account of the Kennedy-Sauerland Puz-
zle. After all, both the antecedent and elided (or unelidable) constituents
contain traces (of every town and Op lake/one, respectively), and the only
way to semantically differentiate between these traces—thereby preventing
(12a) and permitting (12b)— is to posit that town/lake/one makes a semantic
contribution at its lower merge site. Since trace conversion adheres to ILRH,
it makes for a useful framework in which to formulate Sauerland’s analysis.
Therefore, given the arguments against trace conversion that will be offered

14:11



Robert Pasternak

in the next section, it will be important that whatever ends up replacing it
similarly adhere to ILRH.

3 Trace conversion and its discontents

In this section I will discuss syntactic and semantic trace conversion in
greater detail, as well as the critical issues that each version faces. This will
pave the way for my own analysis later in the paper, which generates the
semantic effects of trace conversion while avoiding those problems faced by
prior implementations.

3.1 Syntactic trace conversion

The most popular approach to trace conversion, and the version assumed
thus far, is syntactic: a post-syntactic operation replaces determiners at lower
merge sites with the𝑛. Note that an additional positive of trace conversion
beyond its semantic results is that it swaps in a syntactic object whose exis-
tence has already been motivated on independent grounds: simply put, there
is such a thing as overt the. Thus, not only does syntactic trace conversion
follow through on the Minimalist Program’s avoidance of traces while allow-
ing for straightforward semantic computation that adheres to ILRH, but it
does so while also only making use of syntactic objects whose inclusion as a
part of the grammar has been independently motivated.

However, syntactic trace conversion is not without its drawbacks. Notice
that trace conversion is an operation performed only on lower copies of a
DP, since the highest copy must retain its quantificational interpretation. But
without any recourse to look-ahead there is no way of telling that a given copy
is a lower copy until movement has already taken place, at which point the
lower copy is already embedded in a larger structure.7 In other words, trace
conversion is an inherently countercyclic operation that replaces certain con-
stituents with semantically interpreted material absent from the numeration,
a significant violation of Chomsky’s (1995) otherwise robust Inclusiveness
Condition. While Inclusiveness is an empirical hypothesis and should not
be taken as gospel, on basic Minimalist principles the prospect of abandon-
ing it should at least give us pause. After all, if we wish to determine the

7 Look-ahead refers to a hypothetical feature of grammars in which the (non)occurrence of
some operation now can in some sense depend on what happens later in the derivation.
Natural language syntax is generally thought to lack look-ahead.

14:12



Compositional trace conversion

extent to which the language faculty is optimally designed— including how
much of its behavior can be predicted by attributing to it only basic syntactic
operations like Merge and Agree—then introducing further operations like
syntactic trace conversion that make it suboptimal in this regard should not
be done unless necessary.

Even if we put Inclusiveness aside, trace conversion remains a rather
strange syntactic operation, and it is not entirely clear how its existence could
be empirically motivated. It will help to compare and contrast it with another
covert syntactic operation: covert movement. The fact that the standard ap-
proach to the semantics of quantification happens to require movement to ef-
fect scope reconfiguration does not, of course, constitute evidence for covert
movement: this is an observation about a theory, not about language. This
is why researchers have looked elsewhere for evidence of covert movement,
including parallels between covert and overt movement, cross-linguistic vari-
ation in whether certain movement operations are covert or overt, effects of
covert movement on overt structure (e.g., Fox & Nissenbaum’s (1999) afore-
mentioned account of extraposition), etc. Yet to my knowledge the only ex-
isting motivations for syntactic trace conversion involve its necessity under
current semantic assumptions for generating appropriate interpretations (in-
cluding ILRH). But again, this is an observation about a semantic theory, not
an observation about language. Moreover, the kinds of evidence in favor of
covert movement do not seem to be available for trace conversion: I am un-
aware of any evidence for the existence of an overt counterpart to trace con-
version, nor of trace conversion affecting overt structure. Put succinctly, if
contemporary semantic assumptions happened to mesh well with multiple-
merge and generate the appropriate interpretations, there would be no rea-
son to posit a syntactic operation of trace conversion at all.

This implementation of syntactic trace conversion also suffers from the
fact that DPs are not the only type of syntactic constituent that takes scope
by means of movement. For instance, degree phrases in comparatives can
give rise to scope ambiguities, as evidenced by examples (24) and (25) from
Heim (2000: 48, paraphrases mine), in which the degree phrases exactly 5
pages -er than that and less than that can scope either above or below the
intensional verb require:

(24) (This draft is 10 pages.) The paper is required to be exactly 5 pages
longer than that.
a. The paper must be exactly 15 pages. (require > DegP)

14:13



Robert Pasternak

b. The minimum length is precisely 15 pages. (DegP > require)

(25) (This draft is 10 pages.) The paper is required to be less long than that.
a. The maximum length is under 10 pages. (require > DegP)
b. The minimum length is under 10 pages. (DegP > require)

In addition, Iatridou & Zeijlstra (2013) argue that the relative scope of modals
and negation is resolved bymeans ofmovement. More specifically, they argue
that modals are merged under negation and move overtly past it; modals
like can that scope under negation then reconstruct to their pre-movement
positions, while those like must that scope over negation are interpreted in
their post-movement positions, leaving a trace (or “trace”) in their merge
positions.

(26) a. Rivka cannot leave the party. (LF: [not [can…]])
b. Rivka must not leave the party. (LF: [must1 𝜆1 [not [t1…]]])

Thus, according to a straightforward implementation of trace conversion,
degree morphemes like -er and less and modals like must have to be covertly
replaced with bound definite determiners at lower copies.8 While one can of
course simply bite the bullet and accept that modals and degree heads (and
other scope-taking heads) can be replaced at LF with definite determiners,
an operation that covertly inserts the in syntactic environments in which it
cannot overtly appear is at face value an undesirable one to posit, at least
without substantial further motivation.

A reasonable response to this empirical problem would be to posit that
syntactic trace conversion does not insert the actual lexical determiner the,
but rather something else that has a similar semantic contribution. Moulton
(2015), for example, adopts such a view, proposing a rule of Category-Neutral
Trace Conversion (CNTC):

(27) Category-Neutral Trace Conversion (Moulton 2015: p. 326):
a. Quantifier Removal: [DP every square]3 ⇝ [DP square]3
b. Index Interpretation: [DP square]3 ⇝ [DP 3: 3 is a square]

He then posits that “the output of Index Interpretation is shorthand for the
semantics, which interprets the index as a restricted variable” (Moulton 2015:
p. 326):

8 Heim (2006) argues that less is not monomorphemic, but is composed of -er + little, with
-er doing the degree quantification. In this case, for both (24) and (25) it is -er that must be
replaced with the.

14:14



Compositional trace conversion

(28) Semantic Interpretation Post-CNTC (Moulton 2015: p. 326):J[DP 3: 3 is a square]K𝑔 = 𝑔(3) iff JsquareK(𝑔(3)) = 1; undefined oth-
erwise

But even though CNTC avoids the problem of determiners in places they do
not belong, and even though Quantifier Removal itself is innocent enough
(being a deletion operation), as a syntactic operation Index Interpretation is
undesirable for the same reasons as the original formulation of trace con-
version: it violates Inclusiveness and is motivated only on the grounds that
it is necessary to maintain current semantic assumptions. In addition, while
Moulton does not go through how the output of Index Interpretation is in-
terpreted compositionally, it seems as though an altogether novel rule of
semantic interpretation is required, along the following lines:

(29) J[XP 𝑛 : 𝑛 is (a) Y]K𝑔 = 𝑔(𝑛) iff JYK(𝑔(𝑛)) = 1; undefined otherwise

An alternate version of CNTC might avoid the stipulation of a new rule
of semantic composition as follows: Index Interpretation inserts some ob-
ject that is distinct from the—call it schme—that is syntactically category-
neutral and semantically behaves like a type-generalized bound definite:

(30) Jschme𝑛K𝑔 = 𝜆𝐽 ∶ 𝐽(𝑔(𝑛)). 𝑔(𝑛)
This would give us a version of trace conversion that is category-neutral,
but that does not require a new compositional rule. But in addition to re-
taining the syntactic disadvantages of the original formulations of trace con-
version and Index Interpretation, there is another reason why schme should
give us pause. Recall that one advantage of the original formulation of trace
conversion—that is, the one that used the instead of schme—is that we al-
ready know that the exists, so we are only using syntactic objects whose ex-
istence can be independently justified. But there is no such justification for
schme, since no language has an overt definite “determiner” that cuts across
semantic types and syntactic categories. So what we are left with is a newly
stipulated syntactic object whose existence cannot be justified on indepen-
dent grounds, and that can only be inserted countercyclically at locations
from which movement originates. In other words, once syntactic trace con-
version is appropriately extended to account for QR of non-DPs, what we end
upwith is something that bears a suspicious resemblance to traces, which are
the very thing that multiple-merge theories of movement have been trying
to eliminate in the first place.

To summarize, while syntactic trace conversion has some semantic ben-
efits, there is reason to think it is undesirable as a syntactic operation: it

14:15



Robert Pasternak

violates Inclusiveness and is motivated only by its necessity under certain
contingent semantic assumptions. Moreover, once trace conversion is ex-
tended beyond DP quantification, we have to either permit the to be inserted
in syntactic environments in which it otherwise cannot appear, or we have to
replace it with a newly stipulated syntactic object (schme) that has no overt
counterpart, and that closely resembles the very thing multiple-merge theo-
ries of movement seek to replace: namely, traces.

3.2 Semantic trace conversion

An alternative possibility mentioned by Fox (2003) is that trace conversion
is not syntactic but semantic: no alterations occur at LF, but the semantics
interprets quantificational DPs at lower merge sites as if some syntactic al-
teration had taken place. (See Ruys 2015 for a similar proposal.)

(31) Semantic Trace Conversion (Fox 2003: p. 110):
In a structure formed by DP movement, DP𝑛[𝜙…DP𝑛…], the derived
sister of DP, 𝜙, is interpreted as a function that maps an individual,
𝑥, to the meaning of 𝜙[𝑥/𝑛].

𝜙[𝑥/𝑛] is the result of substituting every constituent with the
index 𝑛 in 𝜙 with him𝑥, a pronoun that denotes the individual 𝑥.

Note that while this particular implementation does not adhere to ILRH, one
could presumably formulate an equally plausible alternative that does.

Given that on a semantic trace conversion account an LF like (3) or Fig.
1 can be directly interpreted without intervening syntactic operations, this
approach naturally avoids the pitfalls of its syntactic counterpart. However,
in the end these problems are not so much eliminated as they are shifted
from syntax to semantics, as we face a new problem of non-compositionality:
the interpretation of a scope-bearing constituent is no longer a function of
its structure, since the same phrase is interpreted like a quantifier in some
syntactic environments and like a trace in others.

As a reviewer points out, this is not necessarily anti-compositional if we
define compositionality in a way that makes use not only of the LF repre-
sentation, but also of information about how that LF structure was derived.
Semantic trace conversion would not be in violation of this looser notion of
compositionality, since lower copies would be derivationally distinct from
higher copies in spite of being representationally identical, meaning that the
two copies could receive distinct interpretations. But without further con-

14:16



Compositional trace conversion

straints, this grants more power to the semantic apparatus than has other-
wise been empirically motivated. For example, there is no natural language
determiner nonce that has a different interpretation depending on whether
or not it undergoes, say, raising:

(32) JnonceK =
⎧
⎨⎩

∀ if nonce undergoes raising
∃ otherwise

(33) a. Nonce dog seems to be here. (≈ Every dog seems to be here.)
b. Nonce dog is here. (≈ A dog is here.)

Similarly, there is no pronoun faux whose referent must be animate if it
undergoes A′-movement, or inanimate if it does not:

(34) Jfaux𝑛K𝑔 is defined iff either (i) faux undergoes A′-movement and
𝑔(𝑛) is animate, or (ii) faux does not undergo A′-movement and 𝑔(𝑛)
is inanimate. Where defined, Jfaux𝑛K𝑔 = 𝑔(𝑛).

(35) a. Faux, I like. (≈ Her, I like.)
b. I like faux. (≈ I like it.)

Though such observations are often left tacit, it is difficult to overstate their
importance to semantic inquiry. Traditional representation-only approaches
to compositionality immediately predict these observations, but approaches
that incorporate a mixture of derivational and representational information
do not: if identical constituents with different derivational histories count as
distinct as far as compositionality is concerned, without freshly stipulated
restrictions all bets are off.9

In summary, semantic trace conversion avoids the syntactic stipulations
of syntactic trace conversion by shifting the work from the syntax to the se-
mantics. However, this comes at the cost of either a partial abandonment of
the principle of compositionality, or a weakening of the notion of composi-
tionality in a way that has not been otherwise motivated. It is worth noting

9 Another possibility, suggested by Ruys (2015), is that higher and lower copies can be dif-
ferentiated featurally: a lower copy might have an unchecked feature that is checked in a
higher copy (e.g., Case). However, this does not seem to militate against lexical items like
nonce or faux, whose movements would presumably also be feature-driven. Moreover, this
approach seems to conflict with basic Minimalist assumptions about the architecture of the
grammar. If the feature that differentiates between higher and lower copies is interpretable
at LF, it should not be deleted upon checking and should thus be present in all copies. If the
feature is uninterpretable at LF, then since the presence of uninterpretable features leads
to a crash that feature must be deleted in all copies.

14:17



Robert Pasternak

that the theory endorsed in this paper, and to which we next turn, bears a
close resemblance to semantic trace conversion, in that the compositional
apparatus is responsible for generating the semantic result of trace conver-
sion. However, it differs by virtue of achieving this in a directly compositional
manner. It thus might be thought of as a fully compositional implementation
of semantic trace conversion. Hence, compositional trace conversion.

4 Compositional trace conversion and DP movement

Our task now is to define a semantics that generates the results of trace
conversion, but does so compositionally and without any syntactic modi-
fications. We first lay out the proposal for DP quantification. Notice that
as far as the compositional semantics is concerned, the copy LF in (3) and
the multidominance LF in Fig. 1 are identical: there is no difference between
(i) distinct but indistinguishable copies at separate merge sites, and (ii) the
same constituent merged at two separate locations. Any analysis that can
interpret one LF directly can interpret either LF directly, including the anal-
ysis proposed in this paper. This in turn means that unlike syntactic trace
conversion, which requires a distinction between higher copies that do not
undergo trace conversion and lower copies that do, the present analysis is
fully agnostic between copy theory and multidominance theory. However,
for the sake of concreteness and simplicity I will often adopt the language
of copy theory. In going over how the system works, we will use the LF in (3),
repeated below, as our example:

(3) [TP every2 teacher 𝜆2 [TP a1 student 𝜆1 T [VP a1 student like every2
teacher]]]

4.1 Swap states as a vehicle for trace conversion

In order for our compositional semantics to work, we need some mecha-
nism that will allow us to “swap out” a determiner’s quantificational inter-
pretation for a the𝑛-like interpretation at lower copies, but in a straightfor-
wardly bottom-up compositional fashion. In order to do this I will make use
of what I call swap states, or states for short. A swap state is a function that
first takes an index 𝑛, then what I will call an etett—any function of type
(𝑒𝑡)(𝑒𝑡)𝑡, the traditional type of quantificational determiners—and returns

14:18



Compositional trace conversion

a (possibly identical) etett.10 For a given state 𝑠, index 𝑛, and etetts 𝐸 and
𝐸′, if 𝑠(𝑛)(𝐸) = 𝐸′, I will say that 𝑠 swaps out 𝐸 for 𝐸′ at (index) 𝑛, or equiv-
alently, 𝑠 swaps in 𝐸′ for 𝐸 at (index) 𝑛. For readability’s sake, I will rewrite
𝑠(𝑛)(𝐸) as [𝐸]𝑠𝑛.

So now that we have swap states, how are they actually used? In short,
they serve a role analogous to variable assignments in approaches like that
of Heim & Kratzer (1998). Tradition has it that variable assignments are a pa-
rameter of semantic interpretation, and lambda abstraction returns a predi-
cate true of an individual iff the pre-abstraction interpretation is true relative
to a suitably altered variable assignment. A version of this is presented in
(36):

(36) Traditional Lambda Abstraction: (cf. Heim & Kratzer 1998)J𝜆𝑛 XK𝑔 = 𝜆𝑥. JXK𝑔[𝑛,𝑥],
where 𝑔[𝑛,𝑥] is the 𝑔′ identical to 𝑔 except that 𝑔′(𝑛) = 𝑥.

Similarly, in the approach presented in this paper, interpretations are pa-
rameterized to swap states, and lambda abstraction generates a predicate
true of an individual iff the pre-abstraction interpretation is true relative to
a suitably altered swap state. A preview of what this will look like, with gaps
to be filled in later, can be seen in (37):

(37) New Lambda Abstraction (Preview):J𝜆𝑛 XK𝑠 = 𝜆𝑥. JXK𝑠[𝑛,?],
where 𝑠[𝑛, ?] is the 𝑠′ such that…

The plan is that whatever JXK𝑠[𝑛,?] looks like, it will perform the semantic
work typically assigned to the operation of trace conversion.

To see how all of this works, let us start by building up the pre-abstraction
VP. As always, we begin our bottom-up derivation by defining our lexical
items. The denotations of teacher and student are as one might expect: they
are state-insensitive 𝑒𝑡-type predicates. These can be seen in (38):

(38) a. JteacherK𝑠 = 𝜆𝑥. teacher(𝑥)
b. JstudentK𝑠 = 𝜆𝑥. student(𝑥)

I will often rewrite 𝜆𝑥. teacher(𝑥) as teacher when convenient, and likewise
for 𝜆𝑥. student(𝑥). As for JlikeK𝑠, this is again more or less as one would

10 A note on notation: type 𝛼𝛽 is what is traditionally written as ⟨𝛼,𝛽⟩. Types are right-
associative, so 𝛼𝛽𝛾 is what would traditionally be written as ⟨𝛼, ⟨𝛽,𝛾⟩⟩, while (𝛼𝛽)𝛾 is
the same as ⟨⟨𝛼,𝛽⟩,𝛾⟩.

14:19



Robert Pasternak

expect, except that it must be assigned a higher type in order to allow it to
directly compose with two (𝑒𝑡)𝑡-type quantificational arguments. This leads
to the definition in (39):11

(39) JlikeK𝑠 = 𝜆𝑄(𝑒𝑡)𝑡𝜆𝑄′
(𝑒𝑡)𝑡. 𝑄′(𝜆𝑥. 𝑄(𝜆𝑦. like(𝑥,𝑦)))

This just leaves us with the determiners a1 and every2, and these are
where swap states make their appearance in the lexical semantics. Let SOME
be the traditional existential etett (i.e., 𝜆𝑃𝜆𝑃′. 𝑃 ∩ 𝑃′ ≠ ∅), and likewise for
EVERY and the universal etett (𝜆𝑃𝜆𝑃′. 𝑃 ⊆ 𝑃′). Instead of simply being SOME,Ja1K𝑠 will be whatever etett 𝑠 swaps in for SOME at index 1; similarly, Jevery2K𝑠
will be whatever etett 𝑠 swaps in for EVERY at index 2:

(40) a. Ja𝑛K𝑠 = [SOME]𝑠𝑛 = 𝜆𝑃𝜆𝑃′. [SOME]𝑠𝑛(𝑃)(𝑃′)
b. Jevery𝑛K𝑠 = [EVERY]𝑠𝑛 = 𝜆𝑃𝜆𝑃′. [EVERY]𝑠𝑛(𝑃)(𝑃′)

Composing our VP involves straightforward function application. First we
combine Jevery2K𝑠 with JteacherK𝑠, and then feed the result to JlikeK𝑠:
(41) a. Jevery2K𝑠(JteacherK𝑠) = 𝜆𝑃′. [EVERY]𝑠2(teacher)(𝑃′)

b. JlikeK𝑠(Jevery2 teacherK𝑠)
= 𝜆𝑄′. 𝑄′(𝜆𝑥. Jevery2 teacherK𝑠(𝜆𝑦. like(𝑥,𝑦)))
= 𝜆𝑄′. 𝑄′(𝜆𝑥. [EVERY]𝑠2(teacher)(𝜆𝑦. like(𝑥,𝑦)))

Next we combine Ja1K𝑠 with JstudentK𝑠 and feed the result to Jlike every2
teacherK𝑠:
(42) a. Ja1K𝑠(JstudentK𝑠) = 𝜆𝑃′. [SOME]𝑠1(student)(𝑃′)

b. Jlike every2 teacherK𝑠(Ja1 studentK𝑠)
= [SOME]𝑠1(student)(𝜆𝑥. [EVERY]𝑠2(teacher)(𝜆𝑦. like(𝑥,𝑦)))

And just like that, our VP is composed.
Treating tense (T) as semantically vacuous for simplicity’s sake, the next

step is lambda abstraction via 𝜆1. As mentioned above, this entails manip-
ulating the swap state in order to swap out the quantificational etett SOME
for a bound variable etett. Whatever this bound variable etett is, it must be

11 As a reviewer notes, JlikeK can also be defined as follows, while still allowing composition
with two (𝑒𝑡)𝑡-type arguments:

(i) JlikeK𝑠 = 𝜆𝑄𝜆𝑥. 𝑄(𝜆𝑦. like(𝑥,𝑦))

To my knowledge there is no meaningful difference between this definition and (39).

14:20



Compositional trace conversion

parameterized to an individual: namely, the entity argument 𝑧 that is lambda-
abstracted over. In keeping with standard implementations of trace conver-
sion, I will use THE𝑧, defined below:

(43) THE𝑧 ∶= 𝜆𝑃𝜆𝑃′ ∶ 𝑃(𝑧). 𝑃′(𝑧)

Now that we have a bound variable etett to swap in for SOME when lambda
abstracting over index 1, we next need to decide on how to actually perform
this swap. In the traditional lambda abstraction in (36), this is done by re-
placing the variable assignment 𝑔 with a variable assignment 𝑔[1, 𝑧] that is
identical to 𝑔 except that 𝑔[1, 𝑧](1) = 𝑧. Similarly, for us this will involve
replacing the swap state 𝑠 with the state 𝑠[1, THE𝑧], which is the state iden-
tical to 𝑠 except that 𝑠[1, THE𝑧] swaps out all etetts for THE𝑧 at index 1. More
generally:

(44) 𝑠[𝑛,𝐸] ∶= 𝜆𝑛′𝜆𝐸′.
⎧
⎨⎩

𝑠(𝑛′)(𝐸′) if 𝑛′ ≠ 𝑛
𝐸 if 𝑛′ = 𝑛

With this in place, we now have the formal tools necessary in order to define
lambda abstraction and fill in the blanks in (37). This can be seen in (45):

(45) New Lambda Abstraction:J𝜆𝑛 XK𝑠 = 𝜆𝑧. JXK𝑠[𝑛,THE𝑧]

Turning back to our example, the result of lambda abstraction is as fol-
lows:

(46) J𝜆1 a1 student like every2 teacherK𝑠
= 𝜆𝑧. Ja1 student like every2 teacherK𝑠[1,THE𝑧]
= 𝜆𝑧. [SOME]𝑠[1,THE𝑧]1 (student)

(𝜆𝑥. [EVERY]𝑠[1,THE𝑧]2 (teacher)(𝜆𝑦. like(𝑥,𝑦)))

By definition, for any state 𝑠 and etett 𝐸, [𝐸]𝑠[1,THE𝑧]1 = THE𝑧, meaning that
[SOME]𝑠[1,THE𝑧]1 can be replaced with THE𝑧. Similarly, for any state 𝑠, etett 𝐸,
and 𝑛 ≠ 1, [𝐸]𝑠[1,THE𝑧]𝑛 = [𝐸]𝑠𝑛, meaning that [EVERY]𝑠[1,THE𝑧]2 can be replaced
with [EVERY]𝑠2.

(47) J𝜆1 a1 student like every2 teacherK𝑠
= 𝜆𝑧. THE𝑧(student)(𝜆𝑥. [EVERY]𝑠2(teacher)(𝜆𝑦. like(𝑥,𝑦)))
= 𝜆𝑧 ∶ student(𝑧). [EVERY]𝑠2(teacher)(𝜆𝑦. like(𝑧,𝑦))

14:21



Robert Pasternak

Notice that crucially, this analysis adheres to ILRH, an aforementioned
desideratum: after lambda abstraction, the lower instance of student makes
a semantic contribution in the form of a domain restriction.

We now have an 𝑒𝑡-type predicate, which naturally can be fed back intoJa1 studentK𝑠:
(48) Ja1 studentK𝑠(J𝜆1 a1 student like every2 teacherK𝑠)

= [SOME]𝑠1(student)(𝜆𝑧 ∶ student(𝑧). [EVERY]𝑠2(teacher)
(𝜆𝑦. like(𝑧,𝑦)))

We then lambda abstract again, this time over index 2:

(49) J𝜆2 a1 student 𝜆1 a1 student like every2 teacherK𝑠
= 𝜆𝑥. Ja1 student 𝜆1 a1 student like every2 teacherK𝑠[2,THE𝑥]
= 𝜆𝑥. [SOME]𝑠[2,THE𝑥]1 (student)

(𝜆𝑧 ∶ student(𝑧). [EVERY]𝑠[2,THE𝑥]2 (teacher)(𝜆𝑦. like(𝑧,𝑦)))
= 𝜆𝑥. [SOME]𝑠1(student)(𝜆𝑧 ∶ student(𝑧). THE𝑥(teacher)

(𝜆𝑦. like(𝑧,𝑦)))
= 𝜆𝑥 ∶ teacher(𝑥). [SOME]𝑠1(student)(𝜆𝑧 ∶ student(𝑧). like(𝑧,𝑥))

And in our final iteration of function application, we apply Jevery2 teacherK𝑠
to the predicate resulting from lambda abstraction:

(50) Jevery2 teacherK𝑠(J𝜆2 a1 student 𝜆1 a1 student like every2 teacherK𝑠)
= [EVERY]𝑠2(teacher)(𝜆𝑥 ∶ teacher(𝑥). [SOME]𝑠1(student)

(𝜆𝑧 ∶ student(𝑧). like(𝑧,𝑥)))
We have finished the derivation, but something is missing. At this point

the interpretation we get is still relative to the swap state that is our param-
eter of interpretation: because (50) uses [SOME]𝑠1 and [EVERY]𝑠2 instead of just
SOME and EVERY, the truth conditions of (50) are at the whim of 𝑠. We of course
do not wish this to be the case, and instead would like to decline the oppor-
tunity to further swap. We can easily define a swap state that does precisely
this: namely, Stay as defined in (51), which swaps out every etett for itself at
every index:

(51) Stay ∶= 𝜆𝑛𝜆𝐸. 𝐸
We then simply say that every sentence is interpreted with Stay as its swap
state parameter. In that case the compositional semantics up to this point
will go exactly as before—nothing in the preceding discussion relied on any
particulars about the parameter 𝑠—and the final interpretation we get is as
in (52):

14:22



Compositional trace conversion

(52) J(3)KStay = EVERY(teacher)(𝜆𝑥 ∶ teacher(𝑥). SOME(student)
(𝜆𝑧 ∶ student(𝑧). like(𝑧,𝑥)))

We thus have a semantic theory that generates the effects of trace con-
version in a straightforwardly bottom-up compositional semantics, without
either a syntactic or a semantic operation of trace conversion: instead, the
semantic work of trace conversion is automatically performed by lambda
abstraction. Before turning to the task of generalizing this analysis beyond
DPs, I will first briefly discuss some other features of the analysis: how it can
be used to define semantic reconstruction, and whether and how it might be
replaced with an alternative with lower-type swap states.

4.2 A possible extension: Semantic reconstruction

Reconstruction is the process whereby a constituent takes scope at a position
below its highest landing site. This is exemplified by the weaker not > every
reading of (53), according to which at least one student did not leave:

(53) Every student didn’t leave.

A common analysis of reconstruction is as a syntactic phenomenon. Fol-
lowing May (1977, 1985), traditional treatments use an operation of quanti-
fier lowering, in which every student moves downward from its pronounced
position to somewhere below negation—presumably, its VP- or 𝑣P-internal
merge position. While syntactic lowering operations are typically no longer
used, the results of quantifier lowering can still be obtained in multiple-
merge theories. Thus, in a copy theory of movement, any copies of every
student that outscope negation can be erased or ignored, furnishing an LF
structure that looks the same as if every student had never moved past not
in the first place. For example, while (53) would have an LF like (54a) on its
surface scope interpretation, its LF would look like (54b) on its inverse scope
interpretation:

(54) a. every1 student 𝜆1 not every1 student leave
b. every1 student not every1 student leave

Similarly, in amultidominance theory all connections can be severed between
every student and points in the structure higher than negation, again gener-
ating an LF structure that looks like one in which every student never moves
past negation. Such structures would compose in an entirely straightforward

14:23



Robert Pasternak

fashion on the analysis in this paper, and the current theory doesn’t have
much of interest to add.

However, more recently it has been argued that some instances of re-
construction—perhaps even all—are not realized syntactically, but only se-
mantically: the movement of one operator past another is not “undone” in
the syntax, but compositional mechanisms ensure that when the moved op-
erator composes in its higher position, the semantic result is still one in
which it takes low scope (von Stechow 1991, Cresti 1995, Rullmann 1995,
Lechner 1998, Sharvit 1999, Wurmbrand 2010, Ruys 2015). I will not in this
paper provide empirical arguments for or against the existence of semantic
reconstruction, either in addition to or instead of syntactic reconstruction.
However, it is worth noting that if semantic reconstruction exists, it can be
captured fairly easily on the analysis proposed in this paper. To illustrate, I
will show how an inverse scope reading of (53) can be derived by means of
semantic reconstruction within the confines of the present analysis.

Traditional treatments of semantic reconstruction involve traces being
interpreted as higher-type variables. Suppose that the LF for (53) looks as in
(55):

(55) every1 student 𝜆1 not t1 leave

If the trace is interpreted as an 𝑒-type variable, the result after lambda-
abstraction will be (56a); when Jevery studentK takes this as an argument,
the result will be a surface scope (every > not) interpretation. But if the trace
is interpreted as an (𝑒𝑡)𝑡-type variable, then after lambda-abstraction the
result will be the higher-type (56b). This will then take Jevery studentK as
its argument, generating a semantically reconstructed inverse scope (not >
every) interpretation.

(56) a. 𝜆𝑥. ¬leave(𝑥)
b. 𝜆𝑄. ¬𝑄(leave)

The same result can be derived on the analysis in this paper. Sup-
pose that in addition to the “normal” lambda-abstractor 𝜆𝑛, there is a
higher-type lambda-abstractor 𝜆′

𝑛, which performs semantically reconstruct-
ing lambda abstraction. (Alternatively, we could suppose that there is one
lambda-abstractor 𝜆𝑛, with optionality as to whether reconstructing or non-
reconstructing lambda abstraction takes place.) Thus, the LF for (53) on its
inverse scope interpretation will be as in (57):

(57) every1 student 𝜆′
1 not every1 student leave

14:24



Compositional trace conversion

Up to and excluding lambda abstraction, the interpretation would be exactly
as we would predict based on the analysis developed thus far:

(58) Jnot every1 student leaveK𝑠 = ¬[EVERY]𝑠1(student)(leave)
Next we define reconstructing lambda abstraction. First, a helpful abbre-

viation:

(59) For 𝐽 of type 𝛼𝛽, 𝐽 is type 𝛼𝛼𝛽, and 𝐽 ∶= 𝜆𝑘𝛼. 𝐽.
𝐽 is simply 𝐽 with an extra, vacuous argument tacked on that is of the same
type as 𝐽’s first argument. Thus, if 𝑄 is an (𝑒𝑡)𝑡-type quantifier, 𝑄 will be an
etett. Reconstructing lambda abstraction can then be defined as in (60):

(60) Reconstructing Lambda Abstraction:J𝜆′
𝑛 XK𝑠 = 𝜆𝑄. JXK𝑠[𝑛,𝑄]

Much like on traditional approaches to semantic reconstruction, the result of
lambda abstraction in (60) takes an (𝑒𝑡)𝑡-type argument instead of an 𝑒-type
argument. As discussed above, since the 𝑄 argument is type (𝑒𝑡)𝑡, 𝑄 is an
etett, meaning that it can be the output to a swap state.

To see how this works, let’s apply it to (58):

(61) J𝜆′
1 not every1 student leaveK𝑠
= 𝜆𝑄. Jnot every1 student leaveK𝑠[1,𝑄]

= 𝜆𝑄. ¬[EVERY]𝑠[1,𝑄]
1 (student)(leave)

= 𝜆𝑄. ¬𝑄(student)(leave)
= 𝜆𝑄. ¬𝑄(leave)Jevery1 studentK𝑠 can then saturate the 𝑄 argument:

(62) Jevery1 student 𝜆′
1 not every1 student leaveK𝑠

= [𝜆𝑄. ¬𝑄(leave)](𝜆𝑃. [EVERY]𝑠1(student)(𝑃))
= ¬[EVERY]𝑠1(student)(leave)

Naturally, when we evaluate with respect to Stay, we get the desired inverse
scope interpretation:

(63) Jevery1 student 𝜆′
1 not every1 student leaveKStay

= ¬EVERY(student)(leave)
Thus, the higher-type lambda abstraction required in order to perform se-
mantic reconstruction is perfectly compatible with the analysis adopted in
this paper.12

12 Note that if semantic reconstruction is permitted, it must be closely regulated. Otherwise,
Fox & Nissenbaum’s (1999) account of Williams’s Generalization could be undone by in-

14:25



Robert Pasternak

4.3 Lower-type swap states and ILRH

In the analysis adopted here, swap states trade in objects of type (𝑒𝑡)(𝑒𝑡)𝑡,
i.e., etetts. However, a reviewer notes that this is not necessary in order for
the semantics to work: swap states could just as easily trade in lower-type,
(𝑒𝑡)𝑡-type quantifiers. Using 𝑜 as a variable over such lower-type swap states
and adopting the same abbreviations as before, Jevery𝑛K𝑜 can be defined as
follows:

(64) Jevery𝑛K𝑜 = 𝜆𝑃𝜆𝑃′. [EVERY(𝑃)]𝑜𝑛(𝑃′)

Since EVERY is an etett, EVERY(𝑃) is of type (𝑒𝑡)𝑡, and can thus serve as an
input to our new lower-type swap states. Now consider the following simple
structure:

(65) every1 student 𝜆1 every1 student left

Up until lambda abstraction, we get the following:

(66) Jevery1 student leftK𝑜 = [EVERY(student)]𝑜1(leave)

This takes us to lambda abstraction, which manipulates the lower-type swap
state. Because of the lower types, rather than swapping in the etett THE𝑧
(where 𝑧 is the lambda-abstracted variable), we swap in 𝑧’s (𝑒𝑡)𝑡-type Mon-
tagovian type-lift, 𝜆𝑃. 𝑃(𝑧):

(67) J𝜆𝑛 XK𝑜 = 𝜆𝑧. JXK𝑜[𝑛, 𝜆𝑃. 𝑃(𝑧)]

This gives us the following post-lambda-abstraction interpretation:

(68) J𝜆1 every1 student leftK𝑜
= 𝜆𝑧. Jevery1 student leftK𝑜[1, 𝜆𝑃. 𝑃(𝑧)]
= 𝜆𝑧. [EVERY(student)]𝑜[1, 𝜆𝑃. 𝑃(𝑧)]1 (leave)
= 𝜆𝑧. [𝜆𝑃. 𝑃(𝑧)](leave)
= 𝜆𝑧. leave(𝑧)

We thus have an 𝑒𝑡-type predicate that can recompose with Jevery1 studentK,
and semantic composition can proceed as normal.

But notice that this no longer satisfies ILRH, a claim for which we saw
empirical evidence in Section 2. The restrictor student makes no semantic
impact at lower merge sites: its semantic contribution is wiped out along

serting 𝜆′
𝑛 instead of 𝜆𝑛 after the post-late merge QR, allowing the DP to scope below the

extraposition site. This problem is not specific to my analysis and extends to any approach
that permits semantic reconstruction.

14:26



Compositional trace conversion

with the determiner’s through lambda abstraction. This can, however, be pre-
vented by enforcing ILRH in the lexical semantics of every and other scope-
taking heads:

(69) Jevery𝑛K𝑜 = 𝜆𝑃𝜆𝑃′. [EVERY(𝑃)]𝑜𝑛(𝜆𝑥 ∶ 𝑃(𝑥). 𝑃′(𝑥))

This gives us the following pre- and post-lambda-abstraction interpretations:

(70) a. Jevery1 student leftK𝑜
= [EVERY(student)]𝑜1(𝜆𝑥 ∶ student(𝑥). leave(𝑥))

b. J𝜆1 every1 student leftK𝑜
= 𝜆𝑧. [𝜆𝑃. 𝑃(𝑧)](𝜆𝑥 ∶ student(𝑥). leave(𝑥))
= 𝜆𝑧 ∶ student(𝑧). leave(𝑧)

But this of course comes at a cost in the form of stipulation: why is the
denotation of every (69) and not the seemingly simpler (64), and likewise
for other determiners? Meanwhile, when using higher-type swap states the
picture is simpler: for any determiner D there is an etett 𝐸 such that JD𝑛K𝑠 =
[𝐸]𝑠𝑛.

It is worth emphasizing that in spite of invoking the empirical claims of
ILRH, this is not an empirical argument in favor of using higher-type swap
states: by using the somewhat more cumbersome definition in (69), ILRH is
indeed still respected. I thus leave the choice between higher- and lower-
type swap states as an open issue. However, regardless of one’s preference
between lower- and higher-type swap states, the fundamental point of the
proposal adopted here remains the same: swap states of some sort are a
useful apparatus for compositionally deriving the semantic results of trace
conversion.13 With this in mind, I will continue to use higher-type swap states
for the rest of this paper. We next turn to the task of extending our approach
beyond DP quantification to include other types of scope-takers.

13 A reviewer notes that if not suitably constrained, swap states could potentially be powerful
enough to define lexical items like faux and nonce from Section 3.2, something that was
previously deemed problematic under certain views of compositionality. This is prevented
on my analysis by making swap states a parameter of interpretation that can only be ma-
nipulated in very specific ways by lambda-abstractors: other heads can be sensitive to swap
states, but cannot manipulate them in the ways required to define faux and nonce. It is worth
noting that traditional variable assignments have to be similarly grammatically constrained,
as they too are formally powerful devices that could be abused to create non-existent se-
mantic interpretations. Thus, the need to constrain formally powerful devices in order to
avoid non-existent interpretations is not specific to swap states.

14:27



Robert Pasternak

5 Generalizing

In this section I will show how our proposal can be extended beyond 𝑒-type
lambda abstraction, thereby generalizing to modals and degree phrases. We
start in Section 5.1 with the formal extension, revising the mechanism in a
way that will permit lambda abstraction over arbitrary types. In Section 5.2
the power of this type-generalized formalism is directed toward an analysis
of modals, first operating under the assumption that modals have syntacti-
cally represented restrictors similar to determiner quantifiers, then showing
that the theory is powerful enough as is to allow ourselves to eschew this as-
sumption and treat modals as lacking syntactically represented restrictors.
Finally, in Section 5.3 the analysis is extended to account for degree phrase
scope-taking in comparatives.

5.1 Type-generalized state dependency

Let’s go back to our traditional lambda abstraction, using variable assign-
ments instead of swap states:

(36) Traditional Lambda Abstraction: (cf. Heim & Kratzer 1998)J𝜆𝑛 XK𝑔 = 𝜆𝑥. JXK𝑔[𝑛,𝑥],
where 𝑔[𝑛,𝑥] is the 𝑔′ identical to 𝑔 except that 𝑔′(𝑛) = 𝑥.

Now suppose variable assignments are of type 𝑛𝑒, i.e., (partial) functions
from indices to individuals. Given that 𝑒 is not the only type over which
lambda abstraction takes place, a reasonable followup question is how this
might be generalized in a manner that will permit lambda abstraction over
arbitrary types, or at least those types over which the compositional seman-
tics requires us to lambda abstract.

There seem to be two obvious candidate paths for type-generalizing
assignment-sensitivity. The first is to utilize a single, type-flexible variable
assignment: 𝑔 can take an index and return an object of any (permissible)
type, so 𝑔(1) might be type 𝑒, 𝑔(2) type 𝑑 (for degrees), 𝑔(3) type 𝑤 (for
worlds), etc. The second path is to replace a single variable assignment of
type 𝑛𝑒 with a cluster of variable assignments for different types: one of
type 𝑛𝑒, one of type 𝑛𝑑, etc.

Let’s flesh out this second view a little more. Suppose the variable as-
signment 𝑔 is replaced with an assignment cluster, a set (or tuple) containing
exactly one function of type 𝑛𝛼 for each lambda-abstractable type 𝛼. For

14:28



Compositional trace conversion

assignment cluster ℎ and lambda-abstractable type 𝛼, let ℎ𝛼 be the 𝑛𝛼-type
variable assignment in ℎ. In much the same way that assignment 𝑔[𝑛,𝑥]was
the assignment 𝑔′ identical to 𝑔 except that 𝑔′(𝑛) = 𝑥, we can define ℎ⟨𝑛,𝑘⟩
as follows:

(71) For assignment cluster ℎ, index 𝑛, and 𝑘 of type 𝛼, ℎ⟨𝑛,𝑘⟩ is the ℎ′

identical to ℎ except that ℎ′
𝛼 = ℎ𝛼[𝑛, 𝑘].

This gives us enough to define lambda abstraction over arbitrary types, as
shown in (72). Notice that lambda abstractors come with not only an index,
but a type parameter to indicate what type is lambda-abstracted over. This
also holds of the type-generalized version of swap state lambda abstraction,
meaning that the lambda-abstractors 𝜆1 and 𝜆2 in the previous section must
be replaced with 𝜆𝑒,1 and 𝜆𝑒,2.

(72) Traditional Lambda Abstraction (Type-Generalized):J𝜆𝛼,𝑛 XKℎ = 𝜆𝑘𝛼. JXKℎ⟨𝑛,𝑘⟩

The same general technique extends equally well to swap states. The swap
states in the previous section took etetts (type (𝑒𝑡)(𝑒𝑡)𝑡) and returned etetts.
To generalize, let’s say that for any type𝛼, an𝛼-swap state takes an index and
an object of type (𝛼𝑡)(𝛼𝑡)𝑡, and returns an object of type (𝛼𝑡)(𝛼𝑡)𝑡. Thus,
the swap states seen in the previous section were 𝑒-swap states; modals will
use𝑤-swap states, and degree phrases will utilize 𝑑-swap states. Much in the
same way that we previously introduced assignment clusters, a swap state
cluster (or state cluster for short) will include exactly one 𝛼-swap state for
each lambda-abstractable type 𝛼, and for any state cluster 𝑟, 𝑟𝛼 will be 𝑟’s
𝛼-swap state. We can also keep the same abbreviation convention as before:
for state cluster 𝑟, index 𝑛, and 𝐾 of type (𝛼𝑡)(𝛼𝑡)𝑡, [𝐾]𝑟𝑛 ∶= 𝑟𝛼(𝑛)(𝐾).
Thus, we can keep the same definitions for Ja𝑛K𝑟 and Jevery𝑛K𝑟 as before,
e.g., Jevery𝑛K𝑟 = [EVERY]𝑟𝑛.

In the previous section, our definition of lambda abstraction made use of
the etett THE𝑥, with 𝑥 being the lambda-abstracted-over variable. In order to
permit arbitrary-type lambda-abstraction, this must be generalized, so that
for 𝑘 of type 𝛼, THE𝑘 will be type (𝛼𝑡)(𝛼𝑡)𝑡. Luckily this is easy to define:

(73) For 𝑘 of type 𝛼, THE𝑘 is type (𝛼𝑡)(𝛼𝑡)𝑡, and
THE𝑘 ∶= 𝜆𝐽𝛼𝑡𝜆𝐽′

𝛼𝑡 ∶ 𝐽(𝑘). 𝐽′(𝑘)
Finally, there is the matter of defining 𝑟⟨𝑛,𝐾⟩:
(74) For state cluster 𝑟, index 𝑛, and 𝐾 of type (𝛼𝑡)(𝛼𝑡)𝑡, 𝑟⟨𝑛,𝐾⟩ is the

𝑟′ identical to 𝑟 except that 𝑟′
𝛼 = 𝑟𝛼[𝑛,𝐾].

14:29



Robert Pasternak

We now have enough to define type-generalized lambda abstraction in our
system:

(75) New Lambda Abstraction (Type-Generalized):J𝜆𝛼,𝑛 XK𝑟 = 𝜆𝑘𝛼. JXK𝑟⟨𝑛,THE𝑘⟩

Finally, recall that when we only had a single 𝑒-state 𝑠, we always evaluated
relative to the state Stay, essentially declining the chance to make any more
swaps at the end of the derivation. Now that we are operating with state
clusters rather than a single 𝑒-state, we will redefine Stay as a state cluster,
as follows:

(76) Stay is the state cluster s.t. for all (lambda-abstractable) types 𝛼,
Stay𝛼 = 𝜆𝑛𝜆𝐾(𝛼𝑡)(𝛼𝑡)𝑡. 𝐾.

The proposal from the previous section has now been extended in a fully
type-generalized manner. We next move on to seeing how the present the-
ory fares when it comes to modals and degree quantifiers, starting with the
former.

5.2 Modals

I will use the sentences in (26), repeated below, to illustrate the analysis of
modal scope:

(26) a. Rivka cannot leave the party.
b. Rivka must not leave the party.

For the time being I will assume that these sentences have the LF structures in
(77); note that I follow Iatridou & Zeijlstra (2013) in treating modals as merged
below negation and overtly moving above it, with must scoping in its post-
movement position and can syntactically reconstructing to its pre-movement
position. As mentioned in the beginning of this section, I start by temporarily
operating under the assumption thatmodals have a syntactically represented
restrictor res, which can be thought of as filling the role that on traditional
Kratzerian accounts is also played by if -clauses (Kratzer 1981, 1991a,b, 2012).
I will later show what happens when we abandon this assumption and treat
modals as restrictor-less (𝑤𝑡)𝑡-type quantifiers. The head int, meanwhile,
serves to bring us from the realm of extensions to intensions. Thus, while
Rivka leave the party denotes a truth value (true iff Rivka left the party in the

14:30



Compositional trace conversion

world of evaluation), int Rivka leave the party denotes a proposition true of
a world iff Rivka left the party in that world.14

(77) a. not [can1 res] int Rivka leave the party
b. [must1 res] 𝜆𝑤,1 not [must1 res] int Rivka leave the party

Note that I assume that the reconstruction of can res is syntactic and not
strictly semantic: rather than the overt movement being semantically undone
by a 𝜆′, it is undone in the syntax by removing the higher merge site. This is
a contingent assumption: 𝜆′ can be type-generalized just as well as regular 𝜆,
and the reconstruction of can res can equally well be formulated as semantic
rather than syntactic.

Our denotations for constituents will now be relative to a context param-
eter 𝑐 and a world of evaluation parameter 𝑢. Let us put aside state clusters
temporarily and assume that 𝑐 and 𝑢 are the only parameters of evaluation.
The denotation of Rivka leave the party—that is, the part of the sentence
below int—is a truth value, true iff Rivka leaves the party in 𝑢:

(78) JRivka leave the partyK𝑐,𝑢 = 1 iff Rivka leaves the party in 𝑢

As promised, int then lambda-abstracts over the world of evaluation, return-
ing a proposition, i.e., a function from worlds to truth values (type 𝑤𝑡):

(79) Jint XK𝑐,𝑢 = 𝜆𝑣. JXK𝑐,𝑣
(80) Jint Rivka leave the partyK𝑐,𝑢 = 𝜆𝑣. Rivka leaves the party in 𝑣

Next up are can1 and res. As mentioned previously, JresK serves to re-
strict JcanK, saturating an argument that in conditionals would be saturated
by the antecedent. Thus, JresK𝑐,𝑢 will be a contextually-determined proposi-
tion 𝑅𝑐. This in turn makes JcanK type (𝑤𝑡)(𝑤𝑡)𝑡: in terms of semantic type,
it is a quantifier over worlds in a manner parallel to how JaK is a quantifier
over individuals. If we ignore issues of scope and multiple-merge composi-
tion, we thus might define JcanK𝑐,𝑢 as in (81), where CAN𝑐𝑢 is a (𝑤𝑡)(𝑤𝑡)𝑡-
type world-quantifier that is (i) context-sensitive, allowing for differences in
modal flavors; and (ii) world-dependent, since what is permissible (for exam-
ple) varies from world to world:

(81) JcanK𝑐,𝑢prelim = CAN𝑐𝑢 = 𝜆𝑝𝜆𝑞. CAN𝑐𝑢(𝑝)(𝑞)

14 I leave for future work the issue of how the present analysis might be integrated with an
alternate theory in which possible worlds enter the compositional semantics through pro-
nouns bound by lambda operators (Percus 2000). I see no reason to believe that any conflict
should arise here.

14:31



Robert Pasternak

Note that it does not matter for our purposes what CAN𝑐𝑢 actually is: it might
be a best-worlds quantifier à la Kratzer (1981, 1991a,b, 2012), or it might be
defined in terms of probabilities and utility functions (see, e.g., Lassiter 2011).
What matters for our purposes is that CAN𝑐𝑢 is of type (𝑤𝑡)(𝑤𝑡)𝑡.

But since can is a modal, and at least by assumption modals can take
scope via movement, we need to re-introduce state clusters into the mix:JcanK must be state-sensitive in much the same way that JaK is. Since we have
type-generalized our semantics by replacing swap states with state clusters,
this is a simple matter:

(82) Jcan𝑛K𝑐,𝑢,𝑟 = [CAN𝑐𝑢]𝑟𝑛 = 𝜆𝑝𝜆𝑞. [CAN𝑐𝑢]𝑟𝑛(𝑝)(𝑞)
Since CAN𝑐𝑢 is of type (𝑤𝑡)(𝑤𝑡)𝑡, [CAN𝑐𝑢]𝑟𝑛 will be the (𝑤𝑡)(𝑤𝑡)𝑡-type world-
quantifier that 𝑟𝑤 swaps in for CAN𝑐𝑢 at index 𝑛.

Let us continue with our derivation. Since JresK𝑐,𝑢,𝑟 is the restrictor propo-
sition𝑅𝑐 (type𝑤𝑡), while Jcan1K𝑐,𝑢,𝑟 is of type (𝑤𝑡)(𝑤𝑡)𝑡, the former restricts
the latter, leading to a (𝑤𝑡)𝑡-type world-quantifier:

(83) Jcan1K𝑐,𝑢,𝑟(JresK𝑐,𝑢,𝑟) = 𝜆𝑞. [CAN𝑐𝑢]𝑟1(𝑅𝑐)(𝑞)
This then composes with Jint Rivka leave the partyK𝑐,𝑢,𝑟, which I will abbre-
viate as the proposition rleave:

(84) Jcan1 resK𝑐,𝑢,𝑟(Jint Rivka leave the partyK𝑐,𝑢,𝑟) = [CAN𝑐𝑢]𝑟1(𝑅𝑐)(rleave)
Next, this composes with JnotK, which is of type 𝑡𝑡 and simply contributes
boolean negation (JnotK𝑐,𝑢,𝑟 = 𝜆𝑡. ¬𝑡):
(85) JnotK𝑐,𝑢,𝑟(Jcan1 res int Rivka leave the partyK𝑐,𝑢,𝑟)

= ¬[CAN𝑐𝑢]𝑟1(𝑅𝑐)(rleave)
This gives us our final denotation relative to the state cluster 𝑟. We then
evaluate relative to Stay:

(86) Jnot can1 res int Rivka leave the partyK𝑐,𝑢,Stay = ¬CAN𝑐𝑢(𝑅𝑐)(rleave)
Of course, regardless of one’s favorite theory of CAN, these will naturally be
the correct truth conditions, with negation outscoping can: it is not permis-
sible that Rivka leave.

We next move on to the LF in (77b), in which must replaces can and takes
scope over negation:

(77b) [must1 res] 𝜆𝑤,1 not [must1 res] int Rivka leave the party

We can define JmustK in a manner parallel to JcanK, but with the world-
quantifier MUST replacing CAN:

14:32



Compositional trace conversion

(87) Jmust𝑛K𝑐,𝑢,𝑟 = [MUST𝑐𝑢]𝑟𝑛 = 𝜆𝑝𝜆𝑞. [MUST𝑐𝑢]𝑟𝑛(𝑝)(𝑞)

Up to and including negation, the derivation for (77b) runs precisely parallel
to that for (77a), leading to the following result:

(88) Jnot must1 res int Rivka leave the partyK𝑐,𝑢,𝑟

= ¬[MUST𝑐𝑢]𝑟1(𝑅𝑐)(rleave)

We then lambda abstract via 𝜆𝑤,1, following our revised rule for lambda ab-
straction:

(89) J𝜆𝑤,1 not must1 res int Rivka leave the partyK𝑐,𝑢,𝑟

= 𝜆𝑣. Jnot must1 res int Rivka leave the partyK𝑐,𝑢,𝑟⟨1,THE𝑣⟩

= 𝜆𝑣. ¬[MUST𝑐𝑢]𝑟⟨1,THE𝑣⟩1 (𝑅𝑐)(rleave)
= 𝜆𝑣. ¬THE𝑣(𝑅𝑐)(rleave)
= 𝜆𝑣 ∶ 𝑅𝑐(𝑣). ¬rleave(𝑣)

This gives us a proposition defined only for worlds in our restricted domain,
and true of those worlds in which Rivka does not leave. This can naturally
be fed back into Jmust1 resK:
(90) Jmust1 resK𝑐,𝑢,𝑟(J𝜆𝑤,1 not must1 res int Rivka leave the partyK𝑐,𝑢,𝑟)

= [MUST𝑐𝑢]𝑟1(𝑅𝑐)(𝜆𝑣 ∶ 𝑅𝑐(𝑣). ¬rleave(𝑣))

We then evaluate relative to Stay, giving us our final truth conditions:

(91) Jmust1 res 𝜆𝑤,1 not must1 res int Rivka leave the partyK𝑐,𝑢,Stay

= MUST𝑐𝑢(𝑅𝑐)(𝜆𝑣 ∶ 𝑅𝑐(𝑣). ¬rleave(𝑣))

Once again, we derive the correct truth conditions, with must scoping over
negation: it is obligatory that Rivka not leave.

Up to now, we have assumed that modals have a syntactically represented
restrictor res, which saturates the same argument that in conditionals is
saturated by the if -clause. However, it is not obvious that if -clauses restrict
modals through argument saturation: for example, von Fintel (1994) argues
at length against this view, and in favor of an analysis in which if -clauses
effect their modal domain restriction through means other than argument
saturation. If this is the case, then there is no longer any reason to assume
that modals are of type (𝑤𝑡)(𝑤𝑡)𝑡, with a silent head res serving to restrict
the modal. Instead, the more plausible analysis would be that modals are
simply of type (𝑤𝑡)𝑡, with no head res at all. In this case, the LF for (26b),
rather than being (77b), would instead be the simpler (92):

(77b) [must1 res] 𝜆𝑤,1 not [must1 res] int Rivka leave the party

14:33



Robert Pasternak

(92) must1 𝜆𝑤,1 not must1 int Rivka leave the party

This raises a conundrum for the present analysis. As things currently
stand, all of the swap states in our state clusters trade in objects of some
type (𝛼𝑡)(𝛼𝑡)𝑡, i.e., quantifiers with restrictor arguments. If modals do not
have restrictor arguments, and are thus of type (𝑤𝑡)𝑡 instead of (𝑤𝑡)(𝑤𝑡)𝑡,
how do they fit into the present system? One possibility is to posit that in ad-
dition to the (𝛼𝑡)(𝛼𝑡)𝑡-type swap state clusters used thus far, the semantics
can also make use of lower-type swap state clusters of the sort briefly dis-
cussed in Section 4.3. While this is certainly doable, it is unnecessary: quan-
tificational operators without syntactic restrictors can already be accounted
for without any revisions to the theory at hand.

Suppose that on a traditional, non-multiple-merge semantics, the deno-
tation for JmustK𝑐,𝑢 is MST𝑐𝑢, which unlike MUST𝑐𝑢 takes a single propositional
argument, making it type (𝑤𝑡)𝑡. Now recall that for any 𝐽 of type 𝛼𝛽, the
abbreviation 𝐽 was defined as 𝜆𝑘𝛼. 𝐽, i.e., 𝐽 with a vacuous first argument
tacked on. Thus, MST𝑐𝑢 is a (𝑤𝑡)(𝑤𝑡)𝑡-type quantifier (𝜆𝑝𝜆𝑞. MST𝑐𝑢(𝑞)), mean-
ing that it can be the input or output to 𝑟𝑤 for a given state cluster 𝑟. We can
then define Jmust𝑛K𝑐,𝑢,𝑟 as follows:

(93) Jmust𝑛K𝑐,𝑢,𝑟 = 𝜆𝑞. [MST𝑐𝑢]𝑟𝑛(𝜆𝑣. 1)(𝑞)

As desired, the semantic type for JmustK is (𝑤𝑡)𝑡 rather than (𝑤𝑡)(𝑤𝑡)𝑡, but
we still have something of type (𝑤𝑡)(𝑤𝑡)𝑡 that is fed into the 𝑤-swap state
𝑟𝑤.

To see that this gets the right results, let’s complete the derivation of (92).
As before, the denotation up to and including the world-abstracting head int
is the𝑤𝑡-type proposition rleave. This is now fed to Jmust1K, which is of type
(𝑤𝑡)𝑡, giving us a truth value:

14:34



Compositional trace conversion

(94) Jmust1K𝑐,𝑢,𝑟(Jint Rivka leave the partyK𝑐,𝑢,𝑟)
= [MST𝑐𝑢]𝑟1(𝜆𝑣. 1)(rleave)JnotK then applies, again contributing boolean negation:

(95) JnotK𝑐,𝑢,𝑟(Jmust1 int Rivka leave the partyK𝑐,𝑢,𝑟)
= ¬[MST𝑐𝑢]𝑟1(𝜆𝑣. 1)(rleave)

We then lambda-abstract, giving us the proposition true of those worlds in
which Rivka does not leave:

(96) J𝜆𝑤,1 not must1 int Rivka leave the partyK𝑐,𝑢,𝑟

= 𝜆𝑣. Jnot must1 int Rivka leave the partyK𝑐,𝑢,𝑟⟨1,THE𝑣⟩

= 𝜆𝑣. ¬[MST𝑐𝑢]𝑟⟨1,THE𝑣⟩1 (𝜆𝑣′. 1)(rleave)
= 𝜆𝑣. ¬THE𝑣(𝜆𝑣′. 1)(rleave)
= 𝜆𝑣 ∶ [𝜆𝑣′. 1](𝑣). ¬rleave(𝑣)
= 𝜆𝑣. ¬rleave(𝑣)

This can naturally be fed back into Jmust1K:
(97) Jmust1K𝑐,𝑢,𝑟(J𝜆𝑤,1 not must1 int Rivka leave the partyK𝑐,𝑢,𝑟)

= [MST𝑐𝑢]𝑟1(𝜆𝑣. 1)(𝜆𝑣. ¬rleave(𝑣))

And to cap it all off, we evaluate with respect to Stay:

(98) Jmust1 𝜆𝑤,1 not must1 int Rivka leave the partyK𝑐,𝑢,Stay

= MST𝑐𝑢(𝜆𝑣. 1)(𝜆𝑣. ¬rleave(𝑣))
= MST𝑐𝑢(𝜆𝑣. ¬rleave(𝑣))

In summary, then, the present proposal extends equally well to lower-type
quantifiers: in this case, JmustK was type (𝑤𝑡)𝑡, rather than (𝑤𝑡)(𝑤𝑡)𝑡, but
higher-type swap states were equally effective in allowing for direct compo-
sition.

5.3 Degree phrases in comparatives

Finally we turn to degree phrases in comparatives, for which I will develop
an account based on that of Bhatt & Pancheva (2004). I start by introducing
traditional, trace-based theories of the syntax-semantics of comparatives in
Section 5.3.1. In Section 5.3.2 I introduce Bhatt & Pancheva’s (2004) multiple-
merge analysis of comparatives, which builds on Fox’s (2002) treatment of
antecedent-contained deletion. In Section 5.3.3 I discuss the relationship be-
tween Bhatt & Pancheva’s (2004) analysis and so-calledwholesale late merger

14:35



Robert Pasternak

of the sort that has been argued to arise in A-movement configurations (Taka-
hashi & Hulsey 2009), as well as the semantic repercussions of this aspect
of their analysis. Finally, in Section 5.3.4 I go through the compositional se-
mantics of comparatives in full.

5.3.1 Classical accounts of comparatives

Before diving into Bhatt & Pancheva’s (2004) analysis, it will help to discuss
classical accounts of comparatives in the tradition of von Stechow (1984) and
Heim (1985, 2000). I will use (99) as a sample sentence:

(99) Jo is taller than Al is.

On traditional accounts (99) has an LF along the lines of (100), in which the
degree phrase headed by -er undergoes QR:

(100) [-er1 Op2 𝜆2 than Al is tall t2] 𝜆1 Jo is tall t1JtallK is a relation between a degree 𝑑 and individual 𝑥, true iff 𝑥 is at least
𝑑-tall:

(101) JtallKtrad. = 𝜆𝑑𝜆𝑥. height(𝑥) ≥ 𝑑

Op is a wh-like operator that triggers lambda abstraction over elided tall’s
degree argument, while than is generally treated as semantically vacuous.
Therefore, the denotation of the restrictor of -er is a degree predicate true
of 𝑑 iff Al is at least 𝑑-tall, and the denotation of the scope of -er is a degree
predicate true of 𝑑 iff Jo is at least 𝑑-tall. J-erK is thus of type (𝑑𝑡)(𝑑𝑡)𝑡, i.e.,
a degree quantifier.

(102) J(99)Ktrad. = J-erK(𝜆𝑑. height(al) ≥ 𝑑)(𝜆𝑑. height(jo) ≥ 𝑑)

Two common denotations for -er that generate the correct truth condi-
tions for (99) are provided in (103).

(103) a. J-erKtake 1 = 𝜆𝐷𝜆𝐷′. max(𝐷) < max(𝐷′)
b. J-erKtake 2 = 𝜆𝐷𝜆𝐷′. ∃𝑑[¬𝐷(𝑑) ∧𝐷′(𝑑)]

By using (103a), the predicted truth conditions are that the maximal degree
not exceeding Al’s height—that is, Al’s height itself— is less than the max-
imal degree not exceeding Jo’s height. In other words, Jo’s height exceeds
Al’s.

(104) J(99)Ktake 1 = max(𝜆𝑑. height(al) ≥ 𝑑) < max(𝜆𝑑. height(jo) ≥ 𝑑)
= height(al) < height(jo)

14:36



Compositional trace conversion

Using (103b), meanwhile, leads to the following truth conditions: there is a
degree that is not less than or equal to Al’s height, and that is less than or
equal to Jo’s height. This will only be the case if Jo’s height exceeds Al’s.

(105) J(99)Ktake 2 = ∃𝑑[height(al) ≱ 𝑑∧ height(jo) ≥ 𝑑]
For our purposes it will not matter which definition of J-erK we adopt.

Rather, the important takeaway is that in (99), J-erK is a (𝑑𝑡)(𝑑𝑡)𝑡-type
degree-quantifier that takes as its restrictor the set of degrees not exceeding
Al’s height, and as its scope the set of degrees not exceeding Jo’s height.

5.3.2 Comparatives, ACD, and late-merged than-clauses

Notice that on the traditional analysis, clausal comparatives constitute a
form of antecedent-contained deletion. After all, the elided AdjP is contained
within its own antecedent—the matrix AdjP, taller than Al is—and so a
quantificational constituent headed by -er must undergo QR to avoid an infi-
nite regress. The parallels between “normal” ACD and comparative ACD are
illustrated in (106); in the former, the antecedent and elided phrases are VPs
and the quantifier that undergoes movement is a DP, while in the latter the
antecedent and elided phrases are AdjPs and the quantifier that undergoes
movement is a DegP.

(106) a. Lisa [VP read [DP every book that Anna did [VP Δ]]]
b. Jo is [AdjP tall [DegP -er than Al is [AdjP Δ]]]

We have already seen one theory of ACD in a multiple-merge theory of
movement: namely that of Fox (2002), who argues that ACD involves (often
string-vacuous) extraposition, with the relative clause late-merging with the
noun it modifies after the DP has undergone (rightward) QR. As a result, ACD
is a misleading name, as the ellipsis site is never actually contained within
its antecedent. In fact, Bhatt & Pancheva (2004) argue at length that compar-
atives should be analyzed in a similar fashion, with the than-clause being ex-
traposed by late-merging with -er after the latter has undergone (rightward)
QR. This is illustrated in (107):

(107) [Jo is tall [DegP -er]] [DegP -er than Al is tall]

After trace conversion, the LF structure that is fed to semantic interpretation
is roughly as in (108). Note that they adopt a version of trace conversion that
is slightly different from the one discussed earlier, but the semantic result
is essentially the same.

14:37



Robert Pasternak

(108) [𝜆𝑑1 Jo is tall the 𝑑1] [-er 𝜆𝑑2 than Al is tall the 𝑑2]

This structure derives the correct interpretation: just like on the traditional
account, the restrictor of -er is the set of height degrees not exceeding Al’s
height, and the scope of -er is the set of height degrees not exceeding Jo’s
height. (Naturally, for our own analysis we will not be using syntactic trace
conversion, meaning that the interpreted LF structure will look more like
(107) than (108).)

The syntactic structure in (107) needs to be fleshed out a bit more. One is-
sue that Bhatt & Pancheva (2004) do not explicitly address is how the degree
argument of the than-clause’s tall is saturated and lambda-abstracted, i.e.,
what does the work of (100)’s Op. While there are multiple possibilities, I will
explore an approach that takes direct inspiration from the matching theory
of relative clauses discussed earlier. Suppose that the than-clause-internal
tall has its degree argument saturated not by Op, but by another -er. This
-er then moves and triggers lambda abstraction, and is deleted upon match-
ing with the instance of -er with which the than-clause late merges. This is
illustrated in (109):

(109) [𝜆𝑑,1 Jo is tall -er1] [-er1 [CP -er2 𝜆𝑑,2 than Al is tall -er2]]

In order for this to work, it must be the case that not only is the higher
-er2 deleted at PF, but it is also deleted—or at least bleached of all seman-
tic content—at LF. More generally, on my analysis this must be said for any
operator whose semantic function is to trigger lambda abstraction through
movement. After all, that operator must have a well-defined denotation in or-
der to compose at the lower merge site, but it must not make its contribution
at the higher merge site and thereby “undo” the lambda abstraction it has
triggered. Thus, the higher instance of the operator must be either seman-
tically bleached or removed entirely. This extends equally well to matching
theories of relative clauses. Take, for example, the NP book that I like:

(110) [NP book [CP Op1 book 𝜆1 that I like Op1 book]]

Clearly in order for composition to work within the relative clause, JOp1K𝑟
must be an etett. But then the result of lambda abstraction must not be al-
lowed to recompose with Op1 book, or else we will end up with something of
type 𝑡, which cannot compose with book. Thus, the higher Op1 book must be
stripped of semantic content or removed from the LF structure entirely after
matching the two instances of book: in some form, deletion upon matching
must apply equally well to both PF and LF.

14:38



Compositional trace conversion

For convenience, I will assume that the higher -er2 is well and truly deleted
after matching, rather than just semantically bleached. With this in mind, the
final interpreted structure for (99) will be as in (111):

(111) [𝜆𝑑,1 Jo is tall -er1] [-er1 [CP 𝜆𝑑,2 than Al is tall -er2]]

5.3.3 Comparatives and wholesale late merger

Before going through the compositional semantics in full, it is important
to note one way in which the analyses of Bhatt & Pancheva (2004) and Fox
(2002) diverge, which will have significant semantic repercussions. For Fox,
the quantifier and its restrictor (e.g., every book) merge as a unit in the pre-
movement position, and the relative clause late merges with the restrictor,
thereby intersectively modifying it at the higher merge site. Meanwhile, for
Bhatt & Pancheva the (𝑑𝑡)(𝑑𝑡)𝑡-type quantifier -er is merged on its own at
the lower site, with the than-clause restrictor itself being late merged after
movement. This distinction is illustrated in (112):

(112) Difference between DP and comparative ACD
(Q = quantifier, R = restrictor, M = modifier)

a. Lisa read [
Q

⏞⏞⏞every1

R

⏞book] … [
Q

⏞⏞⏞every1 [

R+M

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞book that Anna did]]

b. Jo is tall [
Q

⏞er1] … [
Q

⏞er1

R

⏞⏞⏞⏞⏞⏞⏞⏞⏞than Al is]

Bhatt & Pancheva’s (2004) analysis thus raises a semantic conundrum: how is
it that -er1 can simultaneously compose without a restrictor at lower merge
sites, and with a restrictor at higher merge sites? Note that for my own ver-
sion of Bhatt & Pancheva’s (2004) analysis in (111), this issue arises twice:
both the lower matrix -er1 and the than-clause-internal -er2 appear without
syntactic restrictors. For Bhatt & Pancheva (2004) this conundrum is resolved
through trace conversion: while lower -er does not have a restrictor, the par-
ticular version of trace conversion they adopt inserts one for it—or rather,
for the the that replaces it. Naturally, this path is not available to us, mean-
ing that something else must be done to semantically restrict instances of
-er that lack syntactically represented restrictors.15

15 A reviewer suggests that this may be resolved by assigning -er a lower-type ((𝑑𝑡)𝑡) deno-
tation, obviating a than-clause restrictor at the lower merge site. But in this case it is not
clear how the than-clause can then restrict -er after late merge does occur. In other words,

14:39



Robert Pasternak

In fact, Bhatt & Pancheva’s (2004) analysis of comparatives is not the only
proposal in which structures like (112b) crop up: Takahashi & Hulsey (2009)
argue that such configurations also arise in the DP domain (see also Stanton
2016). To see why, note first that A′-movement often does not bleed Con-
dition C when the R-expression (here, John) is contained within a nominal
argument:

(113) a. * He𝑖 was sitting in the sunny corner of John𝑖’s room.
b. * Which corner of John𝑖’s room was he𝑖 sitting in?

(Takahashi & Hulsey 2009: p. 391, attributed to David Pesetsky)

This can be attributed to multiple-merge: in (113b), John is both above and
below the co-indexed he, and the lower position triggers a Condition C vio-
lation.

(114) * [which1 corner of John𝑖’s room] was he𝑖 sitting in [which1 corner
of John𝑖’s room]

However, A-movement does seem to bleed Condition C in parallel configura-
tions:

(115) a. * It seems to him𝑖 that every corner of John𝑖’s room is messy.
b. Every corner of John𝑖’s room seems to him𝑖 to be messy.

To account for this, Takahashi & Hulsey (2009) propose that with A-move-
ment the entire NP corner of John’s room can be wholesale late merged after
movement has taken place, leading to the structure in (116). Independent
factors prevent this from happening with A′-movement, hence why only A-
movement bleeds Condition C.

(116) [
Q

⏞⏞⏞every1

R

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞corner of John𝑖’s room] seems to him𝑖 [
Q

⏞⏞⏞every1] to be messy

This structure is of the same sort as that proposed by Bhatt & Pancheva
(2004) for comparatives: rather than a modifier of the restrictor being late
merged after movement, it is the whole restrictor that is late merged. And
much like Bhatt & Pancheva, Takahashi & Hulsey (2009) adopt a version of
trace conversion that lends restrictors to restrictor-less lower copies, a path
that is not available to us.

the problem is not the need for lower -er to be interpreted as restrictor-less, but rather the
mismatch between the required argument structures for higher and lower -er (restricted vs.
restrictor-less, respectively).

14:40



Compositional trace conversion

So without trace conversion, how can restrictors be lent to syntactically
unrestricted lower copies? Perhaps the simplest option, and the one that I
will adopt, is that a vacuous restriction is provided bymeans of a type-shift ⊤:

(117) For 𝐽 of type (𝛼𝑡)𝛽, 𝐽⊤ ∶= 𝐽(𝜆𝑘𝛼. 1)

The lower, syntactically unrestricted instances of J-erK or JeveryK first un-
dergo this type-shift before composing with their sister, while the syntacti-
cally restricted higher copies compose as normal. This type-shift seems like
one that we should closely regulate, given that in theory it could be used in
many places to derive interpretations that do not exist. One way in which
the application of ⊤ can be regulated is by treating it as a last resort mecha-
nism: ⊤ can only apply if its non-application would lead to a type crash. Its
application can be further restricted by requiring that its use as a last resort
be determined strictly locally: ⊤ can only be used if it will prevent an imme-
diate type crash at the step in the semantic derivation at which it applies. We
will see that this is indeed the case for comparatives, so ⊤ can still apply in
those places that we need it to. Whether different or additional restrictions
on the application of ⊤ are appropriate is a matter I leave for future work.

5.3.4 Semantic composition of comparatives

We now have all of the tools needed for a bottom-up composition of Jo is
taller than Al is, with the syntactic structure in (111), repeated below.

(111) [𝜆𝑑,1 Jo is tall -er1] [-er1 [CP 𝜆𝑑,2 than Al is tall -er2]]

We start with -er, which I assign the following denotation, where ER is some
(𝑑𝑡)(𝑑𝑡)𝑡-type degree-quantifier; I will assume it is one of the definitions in
(103):

(118) J-er𝑛K𝑟 = [ER]𝑟𝑛 (= 𝜆𝐷𝜆𝐷′. [ER]𝑟𝑛(𝐷)(𝐷′))

Let us start in the than-clause, meaning that we compose J-er2K with JtallK.
Previously, JtallK was taken to denote a relation between degrees and indi-
viduals. But in the same way that verbs like JlikeK had to be assigned higher
types in order to take (𝑒𝑡)𝑡-type quantificational arguments, JtallK will in-
stead be assigned a higher type in order to take (𝑑𝑡)𝑡-type arguments:

(119) JtallK𝑟 = 𝜆𝐺(𝑑𝑡)𝑡𝜆𝑥. 𝐺(𝜆𝑑. height(𝑥) ≥ 𝑑)

Since J-er2K is type (𝑑𝑡)(𝑑𝑡)𝑡, while JtallK is looking for a (𝑑𝑡)𝑡-type argu-
ment, we are facing a potential type crash. Fortunately, this type crash can

14:41



Robert Pasternak

be avoided by a last resort application of ⊤ to J-er2K, making it the appropri-
ate type (𝑑𝑡)𝑡:

(120) Jtall -er2K𝑟
= JtallK𝑟((J-er2K𝑟)⊤)
= JtallK𝑟([ER]𝑟2(𝜆𝑑. 1))
= [𝜆𝐺𝜆𝑥. 𝐺(𝜆𝑑. height(𝑥) ≥ 𝑑)]([ER]𝑟2(𝜆𝑑. 1))
= 𝜆𝑥. [ER]𝑟2(𝜆𝑑. 1)(𝜆𝑑′. height(𝑥) ≥ 𝑑′)

This then composes with JAlK𝑟, which I simply take to be the 𝑒-type al,
though this can easily be revised if one wishes to allow names to take scope:

(121) JAl is tall -er2K𝑟 = [ER]𝑟2(𝜆𝑑. 1)(𝜆𝑑′. height(al) ≥ 𝑑′)

Continuing to assume that than is semantically vacuous, next we lambda
abstract:

(122) J𝜆𝑑,2 than Al is tall -er2K𝑟
= 𝜆𝑑. Jthan Al is tall -er2K𝑟⟨2,THE𝑑⟩
= 𝜆𝑑. [ER]𝑟⟨2,THE𝑑⟩2 (𝜆𝑑′. 1)(𝜆𝑑″. height(al) ≥ 𝑑″)
= 𝜆𝑑. THE𝑑(𝜆𝑑′. 1)(𝜆𝑑″. height(al) ≥ 𝑑″)
= 𝜆𝑑. height(al) ≥ 𝑑

The result is that the -er that does the actual degree-quantification—the
higher merge site of -er1 —has precisely the same restrictor as in traditional
analyses: the set of degrees not exceeding Al’s height.

The scope of the quantifying -er1 (the matrix clause up to lambda abstrac-
tion) composes in precisely the same way: JtallK composes with (J-er1K)⊤,
with Jo saturating the entity argument, followed by lambda abstraction over
index 1. The result is the set of degrees not exceeding Jo’s height, again ex-
actly as in traditional theories:

(123) J𝜆𝑑,1 Jo is tall -er1K𝑟 = 𝜆𝑑. height(jo) ≥ 𝑑

The restrictor and scope of highest -er1 then compose with it in turn, gener-
ating the following interpretation for the LF in (111):

(124) J[𝜆𝑑,1 Jo is tall -er1] [-er1 𝜆𝑑,2 than Al is tall -er2]K𝑟
= [ER]𝑟1(𝜆𝑑. height(al) ≥ 𝑑)(𝜆𝑑. height(jo) ≥ 𝑑)

And when evaluating with Stay, we get the following finalized interpretation:

(125) J[𝜆𝑑,1 Jo is tall -er1] [-er1 𝜆𝑑,2 than Al is tall -er2]KStay
= ER(𝜆𝑑. height(al) ≥ 𝑑)(𝜆𝑑. height(jo) ≥ 𝑑)

14:42



Compositional trace conversion

What these truth conditions end up being depends on how one defines ER. If
we use (103a) we get (104), and if we use (103b) we get (105). Either way, the
desired truth conditions obtain: namely, the same ones derived on traditional
analyses.

Summing up, we have seen that Bhatt & Pancheva’s (2004) analysis of
comparatives can be translated into the theory proposed in this paper, so
long as something is done to ensure that the degree-quantifier is semanti-
cally restricted at its lower merge sites. This was accomplished with a type-
shift ⊤, which can also be used to interpret structures with wholesale late
merger of the sort that has been argued to be a possibility in A-movement
configurations.

6 Concluding remarks

In this paper I have outlined a form of compositional trace conversion that
generates the desired semantic effects of trace conversion, but without the
syntactic stipulations or compositional difficulties of its syntactic and se-
mantic variants. This analysis was shown to extend beyond quantificational
DPs, also being able to account for scope-taking movement by modals and
degree phrases. In tying a bow on this paper, I will discuss a couple of areas
that seem to me to be worth exploring in future work.

The first and most obvious issue is empirical coverage. While I have at-
tempted to illustrate the broad applicability of my analysis by extending its
scope beyond quantificational DPs, there nonetheless remain gaps that need
to be filled, such as wh- phrases, adverbs of quantification (e.g., always, usu-
ally), and operators that quantify over focus alternatives (only, even). In addi-
tion, the analysis in this paper must be integrated with an appropriate theory
of pronominal binding. Note that while the interpretations of pronouns could
perhaps be defined via swap states, it is also possible for swap state clusters
to coexist with variable assignment clusters, with lambda-abstraction simul-
taneously manipulating swap states and variable assignments:

(126) J𝜆𝛼,𝑛 XK𝑟,ℎ = 𝜆𝑘𝛼. JXK𝑟⟨𝑛,THE𝑘⟩, ℎ⟨𝑛,𝑘⟩

Thus, the theory in this paper is by all appearances fully compatible with
a traditional approach to pronouns as denoting (free or bound) variables.
However, further elucidation of these topics is left for future exploration.

Additionally, one of the primary arguments against a syntactic opera-
tion of trace conversion was that it violates the Inclusiveness Condition by

14:43



Robert Pasternak

inserting semantically interpreted lexical material that does not appear in
the numeration. However, lambda-abstracting nodes, of which I (and others)
make liberal use, also violate this condition. One path forward could be to
eliminate lambda-abstracting nodes from the syntax and perform the same
semantic work via a separate composition rule:16

(127) Abstract and Apply (AA):
If JX𝑛K𝑟 is type (𝛼𝑡)𝑡, and JYK𝑟 is type 𝑡, thenJX𝑛 YK𝑟 = JX𝑛K𝑟(𝜆𝑘𝛼. JYK𝑟⟨𝑛,THE𝑘⟩)

This rule seems to generate the right results for the basic cases, but ques-
tions may arise about its possible stipulativeness. This also leaves open the
question of what to do about operators like Op, since on the present ap-
proach they trigger lambda abstraction but do not semantically compose at
the higher merge site (see the discussion in Section 5.3). I leave these issues
for future work.

Moreover, as a reviewer notes, another potential problem comes from the
semantically interpreted syntactic indices that appear on scope-taking heads,
which some have argued to themselves constitute violations of Inclusiveness
(see, e.g., Chomsky 2000). My analysis, like many others, makes crucial use
of these indices in the lexical semantics of quantificational heads and the
interpretation of lambda abstraction. Perhaps the most promising means of
obviating syntactic indices is not to eliminate indices altogether, but rather
to treat them as objects that are assigned through compositional semantic
mechanisms, rather than in the syntax. But this, again, is a matter that must
be left for later exploration.

References

Baltin, Mark. 1987. Do antecedent-contained deletions exist? Linguistic In-
quiry 18(4). 579–595. http://www.jstor.org/stable/4178561.

Barwise, Jon & Robin Cooper. 1981. Generalized quantifiers and natural lan-
guage. Linguistics and Philosophy 4(2). 159–219. https://doi.org/10.1007/
BF00350139.

16 If one wishes to permit semantic reconstruction then presumably there need to be two
versions of AA—reconstructing and non-reconstructing—with optionality in determining
which rule is applied.

14:44

http://www.jstor.org/stable/4178561
https://doi.org/10.1007/BF00350139
https://doi.org/10.1007/BF00350139


Compositional trace conversion

Bhatt, Rajesh & Roumyana Pancheva. 2004. Late merger of degree
clauses. Linguistic Inquiry 35(1). 1–45. https : / / doi . org / 10 . 1162 /
002438904322793338.

Chierchia, Gennaro. 1995. Lecture notes from a talk given at Utrecht Univer-
sity.

Chomsky, Noam. 1995. The minimalist program. Cambridge, MA: MIT Press.
Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Roger Martin,

David Michaels & Juan Uriagareka (eds.), Step by step: Essays on Minimalist
syntax in honor of Howard Lasnik, 89–155. Cambridge, MA: MIT Press.

Cresti, Diana. 1995. Extraction and reconstruction. Natural Language Seman-
tics 3(1). 79–122. https://doi.org/10.1007/BF01252885.

Erlewine, Michael Yoshitaka. 2014. Movement out of focus. Cambridge, MA:
MIT dissertation. http://hdl.handle.net/1721.1/93027.

von Fintel, Kai. 1994. Restrictions on quantifier domains. Amherst, MA: Uni-
versity of Massachusetts Amherst dissertation. https://semanticsarchive.
net/Archive/jA3N2IwN/fintel-1994-thesis.pdf.

Fox, Danny. 1999. Focus, parallelism, and accommodation. Semantics and
Linguistic Theory (SALT) 18. 70–90. https://doi.org/10.3765/salt.v9i0.
2819.

Fox, Danny. 2002. Antecedent-contained deletion and the copy theory of
movement. Linguistic Inquiry 33(1). 63–96. https : / / doi . org / 10 . 1162 /
002438902317382189.

Fox, Danny. 2003. On logical form. In Randall Hendrick (ed.), Minimalist syn-
tax, 82–123. Oxford: Blackwell Publishers. https : / / doi . org / 10 . 1002 /
9780470758342.ch2.

Fox, Danny & Kyle Johnson. 2016. QR is restrictor sharing. West Coast Confer-
ence on Formal Linguistics (WCCFL) 33. 1–16. https://www.lingref.com/
cpp/wccfl/33/paper3220.pdf.

Fox, Danny & Jon Nissenbaum. 1999. Extraposition and scope: A case for
overt QR. West Coast Conference on Formal Linguistics (WCCFL) 18. 132–
144.

Gärtner, Hans-Martin. 2002. Generalized transformations and beyond: Reflec-
tions on minimalist syntax. Berlin: Akademie Verlag. https://doi.org/10.
1524/9783050074757.

Gotham, Matthew. 2018. Making Logical Form type-logical: Glue semantics
for Minimalist syntax. Linguistics and Philosophy 41(5). 511–556. https :
//doi.org/10.1007/s10988-018-9229-z.

14:45

https://doi.org/10.1162/002438904322793338
https://doi.org/10.1162/002438904322793338
https://doi.org/10.1007/BF01252885
http://hdl.handle.net/1721.1/93027
https://semanticsarchive.net/Archive/jA3N2IwN/fintel-1994-thesis.pdf
https://semanticsarchive.net/Archive/jA3N2IwN/fintel-1994-thesis.pdf
https://doi.org/10.3765/salt.v9i0.2819
https://doi.org/10.3765/salt.v9i0.2819
https://doi.org/10.1162/002438902317382189
https://doi.org/10.1162/002438902317382189
https://doi.org/10.1002/9780470758342.ch2
https://doi.org/10.1002/9780470758342.ch2
https://www.lingref.com/cpp/wccfl/33/paper3220.pdf
https://www.lingref.com/cpp/wccfl/33/paper3220.pdf
https://doi.org/10.1524/9783050074757
https://doi.org/10.1524/9783050074757
https://doi.org/10.1007/s10988-018-9229-z
https://doi.org/10.1007/s10988-018-9229-z


Robert Pasternak

Heim, Irene. 1985. Notes on Comparatives and Related Matters. University of
Texas at Austin, Ms. Austin, TX. https://semanticsarchive.net/Archive/
zc0ZjY0M/Comparatives%2085.pdf.

Heim, Irene. 2000. Degree operators and scope. Semantics and Linguistic The-
ory (SALT) 10. 40–64. https://doi.org/10.3765/salt.v10i0.3102.

Heim, Irene. 2006. “Little”. Semantics and Linguistic Theory (SALT) 16. 35–58.
https://doi.org/10.3765/salt.v16i0.2941.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Ox-
ford: Blackwell Publishers.

Iatridou, Sabine & Hedde Zeijlstra. 2013. Negation, polarity, and deontic
modals. Linguistic Inquiry 44(4). 529–568. https://doi.org/10.1162/LING_
a_00138.

Johnson, Kyle. 2012. Towards deriving differences in how wh movement and
QR are pronounced. Lingua 122(6). 529–553. https://doi.org/10.1016/j.
lingua.2010.11.010.

Keenan, Edward L. & Jonathan Stavi. 1986. A semantic characterization of
natural language determiners. Linguistics and Philosophy 9(6). 253–326.
https://doi.org/10.1007/BF00630273.

Kennedy, Christopher. 1994. Argument Contained Ellipsis. Linguistics Re-
search Center Report LRC-94-03. University of California, Santa Cruz.
https://semantics.uchicago.edu/kennedy/docs/ace.pdf.

Kratzer, Angelika. 1981. The notional category of modality. In Hans J. Eik-
meyer & Hannes Rieser (eds.), Words, worlds, and contexts: New ap-
proaches in word semantics, 38–74. Berlin: de Gruyter.

Kratzer, Angelika. 1991a. Conditionals. In Arnim von Stechow & Dieter Wun-
derlich (eds.), Semantik/Semantics: An international handbook of contem-
porary research, 651–656. Berlin: de Gruyter.

Kratzer, Angelika. 1991b. Modality. In Arnim von Stechow & Dieter Wunder-
lich (eds.), Semantik/Semantics: An international handbook of contempo-
rary research, 639–650. Berlin: de Gruyter.

Kratzer, Angelika. 2012. Modals and conditionals: New and revised perspec-
tives. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:
oso/9780199234684.001.0001.

Larson, Richard K. & Robert May. 1990. Antecedent containment or vacuous
movement: Reply to Baltin. Linguistic Inquiry 21(1). 103–122. http://www.
jstor.org/stable/pdf/4178662.pdf.

Lassiter, Daniel. 2011. Measurement and modality: The scalar basis of modal
semantics. New York, NY: New York University dissertation.

14:46

https://semanticsarchive.net/Archive/zc0ZjY0M/Comparatives%2085.pdf
https://semanticsarchive.net/Archive/zc0ZjY0M/Comparatives%2085.pdf
https://doi.org/10.3765/salt.v10i0.3102
https://doi.org/10.3765/salt.v16i0.2941
https://doi.org/10.1162/LING_a_00138
https://doi.org/10.1162/LING_a_00138
https://doi.org/10.1016/j.lingua.2010.11.010
https://doi.org/10.1016/j.lingua.2010.11.010
https://doi.org/10.1007/BF00630273
https://semantics.uchicago.edu/kennedy/docs/ace.pdf
https://doi.org/10.1093/acprof:oso/9780199234684.001.0001
https://doi.org/10.1093/acprof:oso/9780199234684.001.0001
http://www.jstor.org/stable/pdf/4178662.pdf
http://www.jstor.org/stable/pdf/4178662.pdf


Compositional trace conversion

Lebeaux, David. 1990. Relative clauses, licensing, and the nature of the
derivation. North East Linguistics Society (NELS) 20. 318–332. https : / /
scholarworks.umass.edu/nels/vol20/iss2/4.

Lechner, Winfried. 1998. Two kinds of reconstruction. Studia Linguistica
52(3). 276–310. https://doi.org/10.1111/1467-9582.00037.

May, Robert. 1977. The grammar of quantification. Cambridge, MA: MIT dis-
sertation.

May, Robert. 1985. Logical Form: Its structure and derivation. Cambridge, MA:
MIT Press.

Moulton, Keir. 2015. CPs: Copies and compositionality. Linguistic Inquiry
46(2). 305–342. https://doi.org/10.1162/LING_a_00183.

Percus, Orin. 2000. Constraints on some other variables in syntax. Natu-
ral Language Semantics 8(3). 173–229. https : / / doi . org / 10 . 1023 / A :
1011298526791.

Romoli, Jacopo. 2015. A structural account of conservativity. Semantics-
Syntax Interface 2(1). 28–57.

Rooth, Mats. 1992. Ellipsis redundancy and reduction redundancy. In Steve
Berman & Arild Hestvik (eds.), Proceedings of the Stuttgart Ellipsis Work-
shop. Heidelberg: IBM Germany.

Rullmann, Hotze. 1995. Maximality in the semantics of wh-constructions.
Amherst, MA: University of Massachusetts Amherst dissertation.

Ruys, E.G. 2015. A Minimalist condition on semantic reconstruction. Linguis-
tic Inquiry 46(3). 453–488. https://doi.org/10.1162/LING_a_00189.

Sag, Ivan. 1976. Deletion and logical form. Cambridge, MA: MIT dissertation.
https://dspace.mit.edu/handle/1721.1/16401.

Sauerland, Uli. 1998. On the making and meaning of chains. Cambridge, MA:
MIT dissertation. https://dspace.mit.edu/handle/1721.1/9671.

Sauerland, Uli. 2004. The interpretation of traces. Natural Language Seman-
tics 12(1). 63–127. https://doi.org/10.1023/B:NALS.0000011201.91994.4f.

Sharvit, Yael. 1999. Connectivity in specificational sentences. Natural Lan-
guage Semantics 7(3). 299–339. https : / / doi . org / 10 . 1023 / A :
1008390623435.

Sportiche, Dominique. 2005.Division of Labor betweenMerge andMove: Strict
Locality of Selection and Apparent Reconstruction Paradoxes. UCLA, Ms.
https://ling.auf.net/lingbuzz/000163.

Stanton, Juliet. 2016. Wholesale late merger in Ā-movement: Evidence from
preposition stranding. Linguistic Inquiry 47(1). 89–126. https://doi.org/
10.1162/LING_a_00205.

14:47

https://scholarworks.umass.edu/nels/vol20/iss2/4
https://scholarworks.umass.edu/nels/vol20/iss2/4
https://doi.org/10.1111/1467-9582.00037
https://doi.org/10.1162/LING_a_00183
https://doi.org/10.1023/A:1011298526791
https://doi.org/10.1023/A:1011298526791
https://doi.org/10.1162/LING_a_00189
https://dspace.mit.edu/handle/1721.1/16401
https://dspace.mit.edu/handle/1721.1/9671
https://doi.org/10.1023/B:NALS.0000011201.91994.4f
https://doi.org/10.1023/A:1008390623435
https://doi.org/10.1023/A:1008390623435
https://ling.auf.net/lingbuzz/000163
https://doi.org/10.1162/LING_a_00205
https://doi.org/10.1162/LING_a_00205


Robert Pasternak

Starke, Michal. 2001. Move dissolves into merge: A theory of locality. Geneva:
University of Geneva dissertation.

von Stechow, Arnim. 1984. Comparing semantic theories of comparison.
Journal of Semantics 3(1). 1–77. https://doi.org/10.1093/jos/3.1-2.1.

von Stechow, Arnim. 1991. Syntax und semantik. In Arnim von Stechow &
Dieter Wunderlich (eds.), Semantik/semantics: An international handbook
of contemporary research, 90–148. Berlin: Walter de Gruyter.

Takahashi, Shoichi & Sarah Hulsey. 2009. Wholesale late merger: Beyond the
A/Ā distinction. Linguistic Inquiry 40(3). 387–426. https ://doi .org/10.
1162/ling.2009.40.3.387.

Williams, Edwin. 1974. Rule ordering in syntax. Cambridge, MA: MIT disser-
tation. https://dspace.mit.edu/handle/1721.1/14770.

Wurmbrand, Susi. 2010. Reconstructing the A/A′-distinction in reconstruc-
tion. University of Pennsylvania Working Papers in Linguistics 16(1). https:
//repository.upenn.edu/pwpl/vol16/iss1/27.

Robert Pasternak
Leibniz-Center for General Linguistics
(ZAS)
Schützenstraße 18
10117 Berlin, Germany
mail@robertpasternak.com

14:48

https://doi.org/10.1093/jos/3.1-2.1
https://doi.org/10.1162/ling.2009.40.3.387
https://doi.org/10.1162/ling.2009.40.3.387
https://dspace.mit.edu/handle/1721.1/14770
https://repository.upenn.edu/pwpl/vol16/iss1/27
https://repository.upenn.edu/pwpl/vol16/iss1/27
mailto:mail@robertpasternak.com

