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Abstract Displaced scope is a hallmark of natural language, and Quantifier
Raising (QR) has long been the standard tool for analyzing scope. Yet despite
the foundational importance of QR to theoretical linguistics, as far as I know,
there has never been a study of its formal properties. For instance, consider
the decidability problem: given an initial syntactic structure, is there an al-
gorithm that will determine whether a semantically coherent QR derivation
exists? If at least one such derivation exists, is the number of semantically
different analyses always finite? How do we know when we have found them
all? Do the answers to these questions depend on imposing scope islands or
other constraints on QR, such as forbidding vacuous movement, re-raising,
remnant raising, raising of names, repeated type lifting, and so on? I settle
these issues by defining QRT (Quantifier Raising with Types), a substructural
logic that is a faithful model of QR in the following respect: every semanti-
cally coherent QR derivation corresponds to a semantically equivalent proof
in QRT, and vice-versa. Since QRT is decidable and has the finite readings
property, it follows that a broad class of theories that rely on QR also have
these properties, without needing to place any formal constraints on QR. I
go on to study the special relationship between type lifting and QR, draw-
ing an analogy with eta reduction in the lambda calculus. Allowing unre-
stricted type lifting does not compromise decidability. In addition, it turns
out that QR with type lifting validates the core type shifting principles of
Flexible Montague Grammar, a paradigm example of an in-situ type-shifting
approach to scope taking. This suggests that QR is compatible with a local,
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directly compositional view of scope taking. These results put Quantifier
Raising on a reassuringly firm formal footing.

Keywords: quantifier raising, decidability, direct compositionality, scope, substruc-
tural logic, type shifting

1 Introduction

Scope-taking is one of the most dramatic, distinctive, and ubiquitous phe-
nomena in natural language, and Quantifier Raising has long been the stan-
dard technique for investigating scope. Yet despite its importance to lin-
guistic theory, as far as I know, there has never been a study of the formal
properties of Quantifier Raising.

Here are some of the questions that this paper will address (and answer).
Given a syntactic structure before Quantifier Raising, is there a procedure
that is guaranteed to terminate and that will decide whether there is a series
of QR operations that will result in a semantically coherent analysis? (Yes.)
If there is at least one such analysis, is the number of semantically distinct
analyses finite? (Yes.) Given that type lifting can turn an individual-denoting
expression into a generalized quantifier, it creates additional opportunities
for QR—does allowing lifting change the answer to either of the first two
questions? (No.) Do we need to ban vacuous QR, QR of names, cyclical QR,
or place limits on lifting in order to guarantee decidability? (No.) Do scope
islands play a crucial role in guaranteeing decidability? (No.) Is it necessary
(for reasons of decidability) to place any restrictions on what can undergo
QR, or on what landing site QR chooses for adjunction? (No.)

In other words, the answers are as favorable as they could be. There may
be good empirical reasons for constraining QR in various ways (imposing
scope islands comes immediately to mind), but such constraints are not re-
quired in order to keep the search space for QR analyses bounded.

So what’s at stake? Why should we care whether QR is decidable?
There is a theoretical answer and a practical answer. Theoretically, if QR

were not decidable, then any realistic grammar that included QR would be
committed to the existence of unanalyzable sentences. For such a sentence,
it would be impossible to say whether it had any coherent semantic interpre-
tation: no matter how many derivations you had already tried, the mere fact
that you hadn’t found one yet that works wouldn’t guarantee that there isn’t

20:2



one. Despite the fact that any given sentence either has a coherent QR analy-
sis or it doesn’t, if QR were not decidable, there would be specific sentences
for which it would be impossible to know what predictions the theory made.

On a practical level, the finite readings property is highly desirable. If QR
did not have the finite readings property, you might never be sure whether
you had found all of the interpretations of a sentence, since there would be
no way to know when to stop looking for the next interpretation. The results
below will place an easily computable bound on the maximum derivational
complexity required to account for all distinct interpretations for any given
set of lexical items. Once your search reaches this bound, you can be sure
you’ve found all of the possible analyses.

As any experienced semanticist knows, decidability worries don’t arise
in simple situations involving garden-variety generalized quantifiers scop-
ing over clauses. However, there are realistic examples where finding any
analysis, let alone all possible analyses, is not so obvious (see Section 3 for
a concrete example). Not only do the results given below settle the theoreti-
cal issues, they provide a practical algorithm for computing all semantically
distinct interpretations for an arbitrary example.

I go on to show that these results hold even if we add unrestricted type
lifting, a generalized version of Partee’s (1987) lift type shifter. Lift is spe-
cial among type shifters. For instance, there is a deep and intriguing anal-
ogy between lift and eta reduction in the lambda calculus. It turns out that
QR with type lifting validates the core type shifting principles of Hendriks’s
(1993) Flexible Montague Grammar, which is a paradigm example of a non-
movement, in-situ, directly compositional approach to scope taking. This
suggests that QR is compatible with a local, directly compositional view of
scope-taking.

My strategy will be to consider a substructural logic, QRT (Quantifier Rais-
ing with Types). QRT is faithful model of QR in the sense that every seman-
tically coherent QR derivation has a semantically equivalent proof in QRT,
and vice versa. Since QRT is decidable and has the finite readings property, it
follows that the set of coherent QR derivations does too. Thus the project re-
ported here is both foundational—seeking a deeper understanding of Quan-
tifier Raising—and cross-disciplinary, bringing to bear the metatheoretical
techniques of formal logic.
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2 Adding types to Quantifier Raising

Heim & Kratzer’s (1998) textbook contains lengthy and detailed discussions
of Quantifier Raising from both an empirical and a technical point of view,
and has served as the touchstone for Quantifier Raising for a generation of
linguists and philosophers. Despite (or perhaps because of?) the centrality
of the topic, they do not give a definition of Quantifier Raising. (Nor, as far as
I know, has anyone else.) Nevertheless, they characterize Quantifier Raising
clearly and precisely enough to provide a solid foundation for a vast amount
of later work.

There is a spirit of experimentation and flexibility in Heim and Kratzer’s
approach. The spirit is something like this: avoid placing unnecessary formal
restrictions on Quantifier Raising, since that may foreclose insightful appli-
cations to empirical problems down the line. I endorse this spirit, and one of
the main takeaway messages of this paper is that Quantifier Raising requires
no purely formal constraints whatsoever.

2.1 Defining Quantifier Raising and QR derivations

Heim & Kratzer (1998: p. 18) quote May’s original 1977: p. 18 proposed rule
of QR verbatim:
(1) Adjoin Q (to S)

May’s rule is meant to give rise to a full specification in the context of general
assumptions about grammatical theory. For instance, since adjunction is a
form of movement, like all movement, QR leaves a trace that is bound by the
moved expression.

Here is an example to illustrate:
(2) Ann saw everyone.

⋅

⋅

everyonesaw

Ann

𝑄𝑅
→

⋅

⋅

⋅

⋅

𝑡1saw

Ann

1

everyone
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The quantifier everyone raises via QR to adjoin to S, leaving behind a trace
𝑡1. In Heim & Kratzer’s (1998: p. 186) treatment, the trace’s index, an integer
(here, ‘1’), is also inserted as a sibling to the adjunction site in order to provide
a binder for the trace.

As schematic as (1) is, even the few specific elements it does contain are
open to challenge. For instance, although May restricts adjunction to S, Heim
and Kratzer motivate adjunction to VP as well. Likewise, the ‘Q’ in (1) is meant
to cover quantificational determiner phrases, but Heim and Kratzer explic-
itly allow QR of non-quantificational DPs (as discussed below). Furthermore,
analyses in the literature insightfully extend QR to adjectives, adverbs, com-
paratives, and a host of other expression types. So it seems prudent for the
categorial identity of the expressions being raised, as well as the categorial
identity of the adjunction site, to be left as open-ended as possible, at least
as a matter of the definition of QR. In the spirit of maximizing flexibility, I
will assume that QR allows an expression of any category to adjoin to a land-
ing site of any category. If a system with such a radically unconstrained QR
is nevertheless decidable with finite readings, then certainly any more highly
constrained system will be as well (as long as the constraints themselves are
decidable, of course).

By the way, given that QR is not limited to raising quantificational expres-
sions, “Quantifier Raising” is not an accurate name. “Scope Taking” would be
better. However, the term “Quantifier Raising” is firmly embedded in current
practice.

With a view towards formalizing Quantifier Raising enough to address the
formal questions of interest here, it will help to have a more precise idea of
what counts as a logical form, what exactly Quantifier Raising does to logical
forms, and what counts as an LF derivation.

(3) 𝐿 ∶= 𝑊 | 𝐿𝐿 | 𝑡𝑖 | 𝑖 𝐿 (Logical Forms)

A logical form consists of a word𝑊 (or other lexical item), or a binary branch-
ing structure consisting of two logical forms, or a trace indexed by an integer
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𝑖, or an abstraction consisting of an integer index 𝑖 followed by a logical form.

(4) Quantifier Raising: Let 𝜎 = […[…𝛿…]𝛾 …] be a logical form that
contains a logical form 𝛾 that contains a logical form 𝛿. Then Quanti-
fier Raising applied to 𝜎 produces […[𝛿[𝑖[…𝑡𝑖 …]𝛾]]…] as a result,
in which 𝛾 has been replaced by a new logical form whose two daugh-
ters are 𝛿 and an abstraction, where the abstraction consists of the
index 𝑖 and the result of modifying the original 𝛾 by replacing 𝛿 with
a coindexed trace 𝑡𝑖.

The index 𝑖 must be chosen fresh, so that it is distinct from any other index
in the original logical form.

(5) LF derivation: an LF derivation consists of a finite series of logical
forms in which the initial logical form contains no traces or indexes,
and each subsequent logical form is created from its predecessor by
a single application of Quantifier Raising.

So the derivation diagramed in (2) corresponds to the following LF derivation:

(6) [Ann [saw everyone]], [everyone [1 [Ann [saw 𝑡1]]]]

Note that the official characterization of a logical form in (3) does not pro-
vide for syntactic category labels. Since the questions addressed here con-
cern only semantic coherence, syntactic categories are not directly relevant,
though they could easily be added without affecting the results.

Just to be clear, on the terminology here, a structure that conforms to (3)
but that has not undergone any QR operations (that is, a pre-QR structure)
still counts as a logical form. Likewise, the proper subparts of a complete
logical form also count as logical forms, with one exception: an index that
helps form an abstraction structure does not by itself count as a logical form
according to the specification in (3), so although Quantifier Raising can target
a trace for raising (traces are logical forms), it cannot target an index.

2.2 Type coherence

With all of the desire for flexibility in the world, there is a general formal
constraint on QR derivations that is non-negotiable: as Heim and Kratzer
discuss, at the end of the day, after all raising and adjoining and predicate
modification (and, as we’ll discuss below, type shifting) is done, the final
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logical formmust be interpretable. Thismeans in particular that the semantic
types of the components of the logical form must be coherent.

We’ll need to say precisely what it means for a logical form to be coher-
ent with respect to types. Although there is reasoning about types in Heim &
Kratzer 1998, there is no general method for figuring out the types of logical
forms. The role of types is partially covered by making denotations partial
functions that are defined only over restricted semantic domains. For in-
stance, a denotation expression may begin “𝜆𝑥 ∈ 𝐷e…”, where 𝐷e is the
domain of individuals. Nevertheless, the way that the system has to work is
clear, and the rules below are fully compatible with what I take to be Heim
and Kratzer’s intentions, as well as with standard practice.

I’ll keep types as simple as possible, just as in Heim & Kratzer 1998: p. 28
among many others. As usual, there will be a basic type e for individuals and
a basic type t for truth values, as well as functional types𝐴 → 𝐵, where𝐴 and
𝐵 are arbitrary types. Following common practice, types can be abbreviated:
𝐴 → 𝐵 will sometimes be written ‘𝐴,𝐵’ or, where no ambiguity will arise,
‘𝐴𝐵’. Although it is common to group types using angle brackets, I’ll use
parentheses instead. As always, types are strictly right associative, so eet is
the type e → (e → t), the type of a transitive verb. Intensionality is left out
of the discussion here (purely) for simplicity and clarity. Here is a summary
specification of what counts as a type:

(7) 𝑇 ∶= e | t | 𝑇 → 𝑇 (Types)

If a logical form 𝛼 is a member of a type 𝐴, I’ll say that 𝛼 has type 𝐴, and
write 𝛼 ∶ 𝐴.

We can make explicit what it means for a logical form to be coherent with
respect to types by supplementing Heim and Kratzer’s two main rules for se-
mantic interpretation, function application (p. 49) and Predicate Abstraction
(pp. 96; 186), with typing judgments:

(8) Typing rules for logical forms:

T0. A lexical item has type 𝐴 just in case the lexicon says it does.

T1. Given a logical form 𝛼with two daughters
𝛽 and 𝛾 (ignoring order), neither of which
is an index, 𝛼 will have type 𝐴 whenever
𝛽 has type 𝐵 and 𝛾 has type 𝐵 → 𝐴. This
typing rule corresponds to the semantic
rule of function application.

𝛼∶𝐴

𝛾∶𝐵 → 𝐴𝛽∶𝐵
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T2. Given a logical form 𝛼with two daughters
𝑖 and 𝛾, where 𝑖 is an index, 𝛼 will have
type 𝐵 → 𝐴 just in case 𝛾 contains exactly
one trace with index 𝑖, and 𝛾 has type 𝐴
whenever the coindexed trace has type 𝐵.
This typing rule corresponds to the se-
mantic rule of Predicate Abstraction.

𝛼∶𝐵 → 𝐴

𝛾∶𝐴

…𝑡𝑖∶𝐵…

𝑖∶𝐵

With these preliminaries, we can now say what it means for a QR deriva-
tion to be coherent with respect to types:

(9) Coherent with respect to types: A logical form is coherent with re-
spect to types iff it is possible to label each node in the logical form
with a type in such a way that each internal node of the logical form
satisfies the typing rules. An LF derivation is coherent with respect to
types iff its final logical form is coherent with respect to types.

For instance, the QR derivation in (6) is coherent with respect to types, since
the logical form after QR is type-coherent. Here is a labeling that shows this:

(10)
t

et

t

et

𝑡1 ∶ esaw ∶ eet

Ann ∶ e

1 ∶ e

everyone ∶ et,t

In contrast, the first logical form in the derivation is not coherent with re-
spect to types, since there is no way to combine the type of a transitive verb
directly with the type of a generalized quantifier. Quantifier Raising is often
motivated as a way to repair this kind of type mismatch (see, e.g., Heim &
Kratzer 1998: 184 ff.). But a type mismatch is by no means a requirement for
QR. For instance, QR is often called on to move quantifiers out of subject po-
sition, where there is no type mismatch. Once again, the strategy here will be
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to maximize flexibility: we’ll assume that QR can raise anything to anywhere.
Figuring out what motivates and constrains QR remains crucially important
to those grammatical theories that rely on QR, but the metatheoretical re-
sults described here are independent of such concerns. Once again, if even
a maximally flexible QR is decidable, it follows that a more constrained one
certainly is.

Two quick points about the flexibility of QR. First, there can be more than
one coherent labeling for a given derivation. For instance, in the logical form
[everyone [1 [𝑡1 left]]], the type of the index and the trace can either be e or
et,t, leading to semantically equivalent results.

Second, the typing rules allow for a derivation on which the type of a trace
cannot be determined by examining the type of the raised element that cre-
ated it. For instance, in the parasitic scope derivation [A B], [A [1 [𝑡1 B]]], [A [B
[2 [1 [𝑡1 𝑡2]]]], the type of the trace 𝑡1 created by raising 𝐴 depends entirely on
the type of the parasitic scope taker 𝐵. Parasitic scope has applications in the
semantics of same and different (Barker 2007b), average (Kennedy & Stanley
2009), non-canonical coordination (Kubota & Levine 2015), and comparatives
(Lechner 2017).

3 Stating the problems

At this point, we can state the main problems addressed in this paper.

(11) The decidability problem for QR: Given a logical form 𝜎 that has
not yet undergone any Quantifier Raising, and a type 𝐴, is there an
algorithm for deciding whether there is a QR derivation whose first
logical form is 𝜎 and whose final logical form is 𝜎𝑛, such that 𝜎𝑛 is
coherent with respect to types and has type 𝐴?

Often the type 𝐴 will be the type of a clause (type t), but we also want to be
able to use QR to derive other phrase types.

This is not the same as asking, given a specific final logical form, whether
there is a derivation that will produce that logical form. That would be a
much simpler problem: if we have a target logical form to aim for, since every
instance of QR creates a trace, we only need to count the traces in the target
in order to determine the number of instances of QR needed to produce it.
The problem of finding any coherent logical form is harder, since we don’t
know in advance the number of instances of QR we will need, or how they
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are deployed.

(12) The finite readings problem for QR: Given a logical form 𝜎 and a
type 𝐴, is the number of semantically distinct derivations on which
the final logical form has type 𝐴 finite?

Here, semantically distinct means not 𝛽-equivalent. So ∀𝑦∃𝑥.saw𝑦𝑥 and
∃𝑥∀𝑦.saw𝑦𝑥 are semantically distinct, but sawann and (∀𝑃.𝑃 ann) saw
are not distinct, since they are equivalent after 𝛽-reduction.

Here’s a restatement of the problem: figure out what to raise to where,
figure out how to type the traces, and prove the result is coherent. As if this
weren’t hard enough, we also have to worry about how to know when to stop:
if we’ve already found one or more analyses, how do we know when we’ve
found them all, so we can stop looking for more?

It may help to have a concrete example to consider:

(13) a. They ((gave them) (the (same excuse))).
b. [e [[eeet e] [et,e [((et,et)et)et et]]]]

Does a logical form with the lexical types as indicated have a coherent QR
derivation on which it has type t? If so, how many distinct semantic analyses
are there? (There is a hint at the end of the Appendix.)

The results below provide an algorithm that will find all semantically dis-
tinct coherent derivations. The essential move will be to translate QR and
the typing rules given here into a particular Type Logical Grammar, and then
leverage a metatheoretical technique pioneered by Gentzen (1935).

4 QRT, the logic of Quantifier Raising

Proving decidability and finite readings proceeds in two steps: first, defining
a formal logic that characterizes the class of coherent QR derivations; and
second, showing that this logic is decidable and has the finite readings prop-
erty. I’ll call the logic QRT, the logic of Quantifier Raising with Types. What
it will mean for QRT to accurately characterize semantic coherence is that
every coherent QR derivation will correspond to a semantically equivalent
proof in QRT, and vice versa.

Like any formal logic, QRT involves formulas, structures built from for-
mulas, and inference rules. The formulas of this logic will be just our set of
types 𝑇 as defined above in (7).

(14) 𝑆 ∶= 𝑇 | 𝑆 ⋅ 𝑆 | 𝑡𝑖 | 𝑖 ⋅ 𝑆 (Type Structures)
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Type structures are closely similar to logical forms as defined above in (3),
except for two differences: type structures contain types instead of words,
and the daughters of structures are unordered, since the functor and the
argument in function application can occur in either order (see the discussion
of type-directed interpretation in Heim & Kratzer 1998: p. 43). An example
of a logical form and its corresponding type structure will illustrate:

(15) a. [everyone [1 [Ann [saw 𝑡1]]]] logical form
b. (et,t ⋅ (1 ⋅ (e ⋅ (eet ⋅ 𝑡1)))) type structure

Technically, I’ll assume that type structures are multisets, so the structure
Δ ⋅ Δ′ is formally indistinguishable from Δ′ ⋅ Δ. The structural punctuation
mark ⋅ provides a visual clue that the object is a type structure rather than a
logical form (mnemonic: multiplication, often written with ⋅, is commutative).

As for stating the inference rules of QRT, there are several standard ways
to go. The most familiar are Hilbert-style axiomitizations and the Natural
Deduction presentation. However, the decidability proof depends on using
Gentzen’s sequent presentation. A sequent is a structure followed by a turn-
stile (‘⊢’) followed by a formula. For our purposes, sequents can be thought
of as typing judgments. For instance, the sequent e ⋅ e → t ⊢ t can be read
as “a structure consisting of a type e and a type e → t has type t.”

(16) The inference rules of QRT:

Axiom
𝐴 ⊢ 𝐴

Δ ⊢ 𝐵 Σ[𝐴] ⊢ 𝐶
→𝐿

Σ[Δ ⋅ 𝐵 → 𝐴] ⊢ 𝐶

Γ[𝐵] ⊢ 𝐴
→𝑅𝑖

𝑖 ⋅ Γ[𝑡𝑖] ⊢ 𝐵 → 𝐴

Γ[Δ] = Δ ⋅ (𝑖 ⋅ Γ[𝑡𝑖])(QR)

The axiom schema licenses inferring that a structure consisting of a type 𝐴
has type 𝐴 without needing any premises.

The next two inference rules characterize the logical content of the impli-
cation arrow (‘→’). The left rule (‘→ 𝐿’) has two premises: if a structure Δ has
type 𝐵, and a structure Σ containing a specific occurrence of type 𝐴 has type
𝐶, then we can replace the occurrence of 𝐴 in Σ with a newly-created struc-
ture consisting of Δ and the type 𝐵 → 𝐴. This rule corresponds to the logical
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form typing rule T1 above, and gives the sequent presentation of function
application.

The right rule (‘→𝑅𝑖’) says that if a structure Γ containing a specific occur-
rence of type 𝐵 has type 𝐴, then abstracting 𝐵 from Γ results in a structure
that has type 𝐵 → 𝐴. This rule corresponds to the logical form typing rule T2,
and gives the sequent presentation of the operation Heim & Kratzer (1998:
p. 96) call Predicate Abstraction. Just as in every version of Quantifier Rais-
ing, the index must be chosen fresh, that is, 𝑖must be distinct from any other
index in Γ.

Although the →𝐿 rule given here is the standard rule of use for implica-
tion, →𝑅𝑖 is unusual; its relation to the standard rule is discussed below in
Section 6.2.

The final inference rule (‘QR’) implements Quantifier Raising. This is a
structural rule, rather than a logical rule. That is, it imposes a constraint on
the set of structures, rather than characterizing the content of a logical con-
nective. It says that any structure that matches one side of the equation can
freely be replaced by a structure with the elements arranged as on the other
side of the equation. Here are schemata that spell out the two kinds of infer-
ences licensed by this rule, depending on the direction of the equivalence:

Σ[Γ[Δ]] ⊢ 𝐴
QR↓

Σ[Δ ⋅ (𝑖 ⋅ Γ[𝑡𝑖])] ⊢ 𝐴

Σ[Δ ⋅ (𝑖 ⋅ Γ[𝑡𝑖])] ⊢ 𝐴
QR↑

Σ[Γ[Δ]] ⊢ 𝐴
Following Barker & Shan 2014: chapter 17 and Barker 2019, I will call QR↓
‘reduction’ and QR↑ ‘expansion’. Expansion implements Quantifier Raising
(compare with (4)); reduction plays a role in a number of discussions below.

To illustrate, here’s a proof justifying the judgment that Ann saw every-
one has type t:

(17)

Ax
e ⊢ e

Ax
e ⊢ e

Ax
t ⊢ t

→𝐿
e ⋅ et ⊢ t

→𝐿
e ⋅ (eet ⋅ e) ⊢ t

→𝑅𝑖
1 ⋅ (e ⋅ (eet ⋅ t1)) ⊢ et

Ax
t ⊢ t

→𝐿
et,t ⋅ (1 ⋅ (e ⋅ (eet ⋅ t1))) ⊢ t

QR↑
e ⋅ (eet ⋅ et,t) ⊢ t
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I’ve used the traditional abbreviations for types, so that et = e → t is the
type of a verb phrase, eet = e → e → t is the type of a transitive verb, and
et,t = (e → t) → t is the type of a generalized quantifier.

In order to check that this proof is valid according to the inference rules
just given, we can first read the proof in the direction of deductive infer-
ence, that is, from top to bottom. The only inference that does not require
any premises is the axiom, so every branch of the proof must begin with an
axiom instance. The first (topmost) →𝐿 inference says that a clause can con-
sist of a subject and a predicate. The second →𝐿 inference says that a verb
phrase can consist of a transitive verb and a direct object (so in this instan-
tiation of the →𝐿 rule, Σ[𝐴] = e ⋅ [et]). The instance of →𝑅𝑖 abstracts the
direct object. The third (lowest) instance of→𝐿 says that a clause can consist
of a generalized quantifier combined with its nuclear scope. Finally, the QR↑
inference drops the generalized quantifier into its surface position by replac-
ing the structure et,t ⋅ (1 ⋅ (e ⋅ (eet ⋅ 𝑡1))) (matching the right hand side of
the structural equation) with e ⋅ (eet ⋅ et,t) (matching the left hand side).
The final conclusion shows that the structure containing the lexical types of
the sentence Ann saw everyone has type t.

But we can also read the proof from the bottom up, in the direction of
proof search. That direction matches the normal approach to constructing
a QR derivation. Starting with the desired conclusion, we ask: is e ⋅ (eet ⋅
et,t) ⊢ t a theorem? That is, does Ann saw everyone have a semantically
coherent QR derivation on which it has type t? We try Quantifier Raising the
direct object, adjoining it to its nuclear scope. The remaining inference steps
confirm that this is a winning strategy.

One of the pleasant properties of Type Logical Grammar is that the com-
positional semantic content of the proofs is automatically determined by the
Curry-Howard correspondence. Under the correspondence, each formula in
the proof receives a lambda term as a label. The label of the result type of
the final conclusion gives the semantic composition of the expression as a
whole based on the labels of the lexical items. According to the standard
correspondence (e.g., Moortgat 1997), →𝐿 corresponds to function applica-
tion, →𝑅𝑖 corresponds to Predicate Abstraction, and structural rules have
no effect on the labeling. The net result is that this proof automatically re-
ceives the same semantic compositional content as the corresponding QR
derivation given above in (10), namely, everyone(𝜆𝑥.saw𝑥Ann).

In fact, we’ve already seen the Curry-Howard correspondence at work
above in the typing rules for QR derivations: Heim and Kratzer’s semantic
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rules and the typing rules are not two things that can be artfully chosen
in a way that brings them into alignment; rather, they are two aspects of a
single thing. For discussion of the Curry-Howard correspondence specifically
as applied to Type Logical Grammars, see Moortgat 1997, Jäger 2005, and
Barker & Shan 2014: chapter 13.

4.1 The equivalence between QR derivations and QRT

The set of analyses characterized by QR derivations and by QRT proofs
are the same up to semantic equivalence: for every semantically coherent
QR derivation there is a semantically equivalent QRT proof, and for every
valid QRT proof there is a semantically equivalent QR derivation. Here, ‘se-
mantically equivalent’ means having the same compositional semantic value,
where two lambda terms related by beta reduction count as the same (e.g.,
((𝜆𝑥𝑥)(e)) and e).

Specifying how to turn an LF derivation into a QRT proof involves building
a QRT proof in two phases. The first phase is a one to one mapping between
QR derivations and sequences of expansion inferences. The essential similar-
ity between the QR operation and the QR structural rule allows a QRT proof
to recapitulate an arbitrary sequence of QR operations exactly. The second
phase is a correspondence between the internal nodes of a labeled logical
form and logical inferences: nodes licensed by typing rule T1 correspond to
→𝐿; nodes licensed by typing rule T2 correspond to →𝑅𝑖; certain mother-
daughter pairs that are licensed by typing rules T1 and T2 correspond to
QR↓; and QR↑, of course, corresponds to Quantifier Raising. Full details are
given in the Appendix, and several illustrating examples are given here. For
instance, the QR derivation summarized in (10) corresponds to the QRT proof
in (17), and vice versa.

Here’s an additional example involving a QR derivation of the inverse
scope reading of Someone loves everyone:

(18) a. Someone loves everyone.
b. QR derivation = 𝜎, 𝜎1, 𝜎2, where
c. 𝜎 =[someone [loves everyone]]
d. 𝜎1 =[someone [1 [𝑡1 [loves everyone]]]]
e. 𝜎2 =[everyone [2 [someone [1 [𝑡1 [loves 𝑡2]]]]]]
f. Type labeling of 𝜎2:
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t

et

t

et

t

et

𝑡2 ∶ eloves ∶ eet

𝑡1 ∶ e

1 ∶ e

someone ∶ et,t

2 ∶ e

everyone ∶ et,t

Here is the corresponding QRT proof delivered by the algorithm in the Ap-
pendix:

(19)

e ⊢ e

e ⊢ e t ⊢ t
→𝐿

e ⋅ et ⊢ t
→𝐿

e ⋅ (eet ⋅ e)) ⊢ t
→𝑅𝑖

1 ⋅ (𝑡1 ⋅ (eet ⋅ e)) ⊢ et t ⊢ t
→𝐿

et,t ⋅ (1 ⋅ (𝑡1 ⋅ (eet ⋅ e)))) ⊢ t
→𝑅𝑖

2 ⋅ (et,t ⋅ (1 ⋅ (𝑡1 ⋅ (eet ⋅ 𝑡2)))) ⊢ et t ⊢ t
→𝐿

et,t ⋅ (2 ⋅ (et,t ⋅ (1 ⋅ (𝑡1 ⋅ (eet ⋅ 𝑡2))))) ⊢ t
QR↑

et,t ⋅ (1 ⋅ (𝑡1 ⋅ (eet ⋅ et,t))) ⊢ t
QR↑

et,t ⋅ (eet ⋅ et,t) ⊢ t

The expansion inferences track the QR derivation exactly. More specifically,
the final sequent corresponds to logical form𝜎, the penultimate logical form
corresponds to logical form 𝜎1, and the third sequent from the bottom cor-
responds to logical form 𝜎2. The remaining inferences justify the claim that
𝜎2 is coherent with respect to types.
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As mentioned, the correspondence between nodes in a labeled logical
form and logical inferences is one to one, with the exception of QR↓, which
corresponds to two nodes. Predicate Abstraction in a QR derivation some-
times corresponds to →𝑅𝑖, and sometimes to a reduction instance of the QR
structural rule (QR↓), depending on whether the raised structure takes the
nuclear scope as its argument, or the other way around. An example will
make this clear:

(20) Ann left.

t

et

t

left ∶ et𝑡1 ∶ e

1 ∶ e

Ann ∶ e
e ⊢ e t ⊢ t

→𝐿
e ⋅ et ⊢ t

QR↓
e ⋅ (1 ⋅ (𝑡1 ⋅ et)) ⊢ t

QR↑
e ⋅ et ⊢ t

QR of names, as shown here, is explicitly allowed by Heim & Kratzer 1998:
p. 210. And why not? QR operates just like normal, and it is easy to find a
labeling that satisfies the typing rules. The corresponding QRT proof in (20),
delivered by the algorithm in the Appendix, is likewise valid. Performing an
expansion immediately after a reduction has a null effect, of course, and if we
eliminate both QR inferences, we have an equally valid proof with the same
semantics. The semantic content of the QR derivation is (𝜆𝑥1.left𝑥1) ann,
which beta reduces to the semantic content of the QRT proof, left ann.

Thus the QR derivation wastes semantic effort. Like the Duke of York, QR
marches the subject into scope-taking position, only to have the semantics
of Predicate Abstraction beta-reduce the subject back into argument posi-
tion. One of the results proven in the Appendix (namely, cut elimination)
guarantees that whenever a QRT proof contains such a semantically useless
excursion, there is a semantically equivalent proof without the excursion.

The relationship between QR derivations and QRT proofs cannot be one
to one. For one thing, type structures ignore linear order, so for each QRT
proof, there will be many semantically equivalent QR derivations that differ
only in the order of siblings within a logical form. For another, as usual with
substructural logics, there are many distinct QRT proofs that are semanti-
cally equivalent. The reason is that QRT proofs differ according to the order
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in which the logical inferences are executed, which can be irrelevant to the
final result (see the Appendix for examples).

Within those constraints, the correspondence is as close as it could be:
QRT covers the full space of semantic analyses generated by QR, adding noth-
ing extra.

5 QR is decidable and has the finite readings property

We can now answer our two main questions affirmatively. Yes, finding out
whether a semantically coherent QR derivation exists is decidable; and for
any particular logical form, the number of such derivations that are semanti-
cally distinct is finite. Here’s a synopsis: given that QRT is decidable and has
the finite readings property, there is an algorithm that will deliver all seman-
tically distinct QRT proofs. Since there is a coherent QR derivation for every
QRT proof, we can translate the results of the algorithm into a set of QR
derivations. We know that we haven’t missed any semantically distinct QR
derivations, since there is a semantically equivalent QRT proof for every QR
derivation—and since the proof search algorithm delivers all semantically
distinct QRT proofs, we can be sure we got them all.

The argument that QRT is decidable and has the finite readings property
follows Gentzen’s (1935) Hauptsatz. In any logic, proving a conclusion de-
pends on proving a set of premises from which the conclusion follows. One
of the distinctive advantages of presenting the logic in sequent form is that
the logical rules have the subformula property: each formula in a premise
appears (exactly once) in the conclusion. This limits the possible premises
that need to be considered to a finite number. Furthermore, there is (exactly)
one formula appearing in the conclusion that does not appear in any of the
premises, namely, the formula created by the logical rule. Since logical con-
nectives, once introduced, can never be eliminated, it follows that the num-
ber of logical inferences cannot exceed the number of logical connectives
present in the final conclusion.

Somuch for the logical rules. As for the structural rule, wemust treat each
direction of substitution separately. The QR↓ inference is easy, since it has
the subformula property, and its premise contains strictly fewer structural
connectives than the conclusion.

As for the QR↑ inference, although it has the subformula property, its
premise is not simpler than its conclusion: it contains more structural con-
nectives than the conclusion, as well as an index and a trace that are not
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present in the conclusion. In order to argue that QRT is decidable, we must
show that there are limits to the number of QR↑ inferences that are needed
in order to construct all semantically distinct proofs.

There are two cases to consider. The first case is when the index elimi-
nated by the inference was introduced by an instance of →𝑅𝑖. Since we al-
ready know that the number of instances of→𝑅𝑖 is limited by the complexity
of the final conclusion, the number of coindexed instances of QR↑ is limited
as well.

The second case is when the index eliminated by QR↑ was introduced
by an instance of QR↓ as in (20). However, it turns out that whenever this
configuration occurs, there is an equivalent proof in which both inferences
have been removed. This is obviously true for the proof in (20), since the
two QR inferences are adjacent and have a null effect. Full details of the
argument are given in Barker 2019 for a closely related logic, and carry over
here with minor adjustments. In brief: it is possible to show that if we simply
remove the matching instances of QR↓ and QR↑, every inference in between
their original positions in the proof can be still be instantiated with the same
net effect. With the exception of the two removed QR inferences, every other
inference remains, in the same order. Since structural inferences don’t affect
the semantic labeling, the modified proof is semantically equivalent and has
the same final conclusion. Since we can safely remove every instance of QR↑
in the second case, only the first case remains.1

Is there a particular feature of QR that is responsible for decidability? Not
exactly. Rather, decidability follows from the way in which QR accomplishes
non-trivial semantic work in concert with the other elements in the logical
system. To see this, if we abandoned the requirement that the final logical

1 After publication of the early-access version of this paper, I discovered that this proof is
incomplete due to the way that commutativity interacts with remnant movement (i.e., when
QR↑ raises an abstraction structure). Rather than adding the details of the complete proof
here, I will suggest reparing the proof by adopting two adjustments. The first adjustment
is to replace unordered type structures (schema (14) in section 4) with ordered pairs. This
would be a change in the interpretation of the structural connective ⋅, with no change in
the appearance of any type structure. The second adjustment is to add inference rules to
QRT (and to QRST, discussed below) for a new logical connective that allows the argument
of an implication to appear on its right hand side. Having both left and right implications
is standard in Type Logical Grammar, where the connectives are written as 𝐴\𝐵 and 𝐵/𝐴.
Logical proofs would remain unchanged, except that inferences that rely on structures being
unordered (such as the middle instance of →𝐿 in (17)) will be replaced with /𝐿 inferences,
without any change to the premises or the conclusions. With these adjustments in place, the
decidability argument given here is correct and complete as written.
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form must be coherent with respect to types, there would be no limit to the
number of QR operations. The key to decidability is the requirement that
each instance of QR must have a non-trivial semantic effect. In order for QR
to have a non-null semantic effect, it must interact with one of the logical
rules; the only option in QRT is →𝑅𝑖. Since each expansion can interact with
at most one instance of → 𝑅𝑖 —after all, a given index can only be eliminated
once—the fact that the number of →𝑅𝑖 inferences is limited means that the
number corresponding expansion inferences is also limited.

Since the proof search space is finite, we not only guarantee decidability,
but finite readings as well.

For the sake of concreteness, here is one especially simple algorithm for
finding all semantically distinct analyses: given a sequent to be proven, try all
possible ways of constructing premises from which the sequent follows by
one of the inference rules. Recursively repeat the search for each premise.
Abandon trying to prove any sequent in which the number of abstraction
indexes exceeds the number of logical connectives.

It is important to say that having an algorithm (i.e., a method that is guar-
anteed to terminate) is not the same thing as having an efficient algorithm.
There are many studies giving bounds on the time complexity of various
grammatical formalisms. For example, Kuhlmann, Satta & Jonsson 2018 dis-
cusses the parsing complexity of Combinatory Categorial Grammar, a for-
malism with some important similarities to Type Logical Grammar. For an
especially relevant investigation, Moot 2020 considers the complexity of NL𝜆,
a logic that is closely related to QRT (as we’ll see in the next section). I make
no claims here about computational complexity, except to say that the simple
procedure just sketched can be vastly improved upon from the point of view
of time cost. Note that the question of the computational complexity of pars-
ing a theory that includes QR is not even well posed unless QR derivations
are decidable with finite readings.

6 Type shifting and direct compositionality

This paper is about Quantifier Raising, and QRT delivers exactly standard
Quantifier Raising, no more, no less. This section pulls back and takes a
slightly wider view, by supplementing QR with the familiar type shifting op-
eration lift.

I’ll mention three reasons why this is worthwhile in the context of this
paper. First, lift interacts with scope taking. Lifting a name of type e turns
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it into a scope-seeking generalized quantifier of type et,t. Since any expres-
sion can potentially undergo the lift operation— including a previously lifted
expression— lifting threatens decidability and finite readings. Is QR still de-
cidable in the presence of lift? (Yes!)

Second, we’ll see that adding lift to QR is parallel to adding eta reduction
to the lambda calculus. This provides a new conceptual perspective on lift.
It also helps explain why it is such a natural and indispensable type shifter,
and suggests that within the class of type shifters, lift bears a special rela-
tionship to QR.

Third, it turns out that QR with lift validates the core type-shifting prin-
ciples of Hendriks’s (1993) Flexible Montague Grammar. Flexible Montague
Grammar is a paradigm example of an in-situ account of scope taking (see,
e.g., Jacobson 2012). So lift characterizes the difference between a pure
movement approach to scope taking and an in-situ type shifting approach.
This shows that it is not the presence of Quantifier Raising that forces move-
ment in a QR theory, or that renders it non directly compositional, but rather
the nature of the rest of the inferential system.

On the logic side, adding lift to QR derivations corresponds to adding
a new structural rule (“eta”) to QRT. I show that QRT + eta is equivalent
to a logic that I will call QRST (Quantifier Raising with Shifty Types). Since
QRST is a fragment of NL𝜆 (Barker 2019), it is decidable with finite readings.
It follows that unrestricted QR with unrestricted lifting is also decidable with
finite readings.

6.1 Lift as eta expansion

Partee & Rooth (1983) pioneered type shifting as a technique for adjusting the
types of linguistic expressions. Lift is among their type shifters (p. 378), and
is included in some form by every system I’m aware of that allows any type
shifting at all. One of the more compelling advantages of lift is that it allows
individual-denoting expressions such as proper names to have type e, at the
same time their lifted versions can coordinate with generalized quantifiers
(e.g., Ann and every student).

Partee (1987) says of lift that it “falls directly out of the type theory,”
and observes that it generalizes to lift expressions of type 𝐴 to type 𝐴𝐵,𝐵
for any 𝐴 and 𝐵. She speculates that although it may not be universal, it
should be available in any particular language “at ‘low cost’ or ‘no cost’.”
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To the extent that lift is universal, or near-universal, we should consider
whether QR remains decidable in the presence of lift.

Type shifters are usually framed as silent semantic operators that adjust
the type and the denotation of an expression without affecting its syntactic
category (see Hendriks 1993 and Winter 2007 for discussion, among others).
I will suggest here a novel approach, treating lift as a rule of logical form,
with exactly the same status as the rule of Quantifier Raising:

(21) lift: Let 𝜎 = […𝛾…] be a logical form that contains a logical form
𝛾. Then lift applied to 𝜎 produces […[𝑖[𝑡𝑖𝛾]]…].

Note that the result of lift is a well-formed logical form, so there is no need
to adjust the typing rules for LFs. We do, however, need to enlarge our set
of LF derivations to include sequences of logical forms in which each logical
form in the sequence is formed from the previous one by a single application
of either QR or lift.

Here is a simple derivation in which a proper name is lifted into a gener-
alized quantifier:

(22) Ann, [1[𝑡1 Ann]]

And here is a type labeling for the final LF:

(23)
et,t

t

Ann∶e𝑡1∶et

1∶et

This logical form contains one instance of Predicate Abstraction and one
instance of Function Application, so it translates into the lambda term
𝜆𝑃.𝑃(ann)—the exact generalized quantifier delivered by the standard lift
type shifter.

What, if anything, is special about lift, in comparison with all of the
logical form rules we could have added to QR? An intriguing answer comes
from the correspondence between QR derivations and the lambda calculus.
It is obvious that Quantifier Raising closely resembles beta equivalence in
the lambda calculus. In the lambda calculus, combining a lambda term with
an argument results in replacing occurrences of the distinguished variable in
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the body of the lambda term with a copy of the argument. This substitution
operation is known as beta reduction: (𝜆𝑥.…𝑥…)𝑎 ⇝𝛽 …𝑎…. QR, then,
is the inverse operation, taking a subexpression, replacing it with a distin-
guished variable, and creating an abstraction structure—that is, QR is beta
expansion. (The fact that the argument appears to the left of its functor in
logical form is not important.)

The lambda calculus is a theory of functional equivalence. If one term can
be derived from another via beta reduction, they are beta equivalent, which
means one can be substituted for the other without affecting the computa-
tional result. Two functions are said to be extensionally equivalent just in
case they deliver the same result for every choice of argument: (∀𝑎.𝑓𝑎 =
𝑔𝑎) → (𝑓 = 𝑔). There are terms in the lambda calculus that are extension-
ally equivalent but not beta equivalent. For instance, 𝜆𝑥.𝑓𝑥 is extensionally
equivalent to 𝑓, since for any choice of argument 𝑎, (𝜆𝑥.𝑓𝑥)𝑎 ⇝𝛽 𝑓𝑎. But
𝜆𝑥.𝑓𝑥 is not beta equivalent to 𝑓. The addition of eta reduction to the sys-
tem, which says that 𝜆𝑥.𝑓𝑥 ⇝𝜂 𝑓, guarantees (Barendregt 1984: p. 63) that
any two extensionally equivalent terms (that have normal forms) are prov-
ably equivalent, in that they can be reduced to the same beta-eta normal
form. So eta reduction renders the lambda calculus complete with respect to
extensionality.

LF is a theory of syntactic equivalence. If one logical form can be derived
from another via Quantifier Raising, they are QR-equivalent, which means
one can be substituted for the other without affecting the syntactic result.
We’ll say that two logical forms are extensionally equivalent just in case they
deliver the same syntactic result for every choice of sibling: (∀𝛼.[𝛼𝛽] =
[𝛼𝛾]) → (𝛽 = 𝛾). Then [1[𝑡1 left]] and left are extensionally equivalent,
since for any choice of sibling, [𝛼 [1[𝑡1 left]]] and [𝛼 left] are QR-equivalent.
But [1[𝑡1 left]] and left are not QR-equivalent. The addition of lift, which
says that [𝑖[𝑡𝑖 𝛾]] ⇝lift 𝛾, guarantees that any two extensionally equivalent
logical forms are provably equivalent, that is, they can be derived via QR and
lift from the same starting logical form. So lift renders LF complete with
respect to extensional equivalence.

Note that LF is a theory of syntactic equivalence, not semantic equiv-
alence. For instance, the two semantically distinct scope readings of
Someone saw everyone, namely [someone[1[everyone[2[𝑡1[saw 𝑡2]]]]]] and
[everyone[2[someone[1[𝑡1[saw 𝑡2]]]]]], are QR-equivalent, since they can
both be derived via QR from the same syntactic structure, namely,
[someone[saw everyone]].
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If you want your lambda calculus to fully characterize functional exten-
sional equivalence, you need both beta reduction and eta reduction. Likewise,
if you want your LF theory to fully characterize syntactic extensional equiv-
alence, you need both Quantifier Raising and lift. This suggests that adding
lift to QR derivations is as natural as adding eta reduction to the lambda
calculus. So lift is related to QR in a uniquely natural and intimate way.

6.2 QRT + eta = QRST

Adding lift to QR derivations corresponds to adding a second structural
rule to QRT:

(24) 𝑖 ⋅ (𝑡𝑖 ⋅ Δ) ⇒ Δ (eta)

This rule says that any structure of the form 𝑖 ⋅ (𝑡𝑖 ⋅ Δ) in a premise can be
replaced by Δ in the conclusion.

The same reasoning that justified decidability for QRT can be extended to
QRT + eta. However, we can gain additional insight by an indirect approach.
I’ll show that QRT + eta is equivalent to a logic I call QRST (Quantifier Rais-
ing with Shifty Types). Since QRST is a fragment of NL𝜆, and Barker (2019)
proves that NL𝜆 is decidable with finite readings, it follows that QRT + eta is
decidable and has the finite readings property.

QRST has the same set of types as QRT, and the same structures.

(25) The inference rules of QRST:

Axiom
𝐴 ⊢ 𝐴

Δ ⊢ 𝐵 Σ[𝐴] ⊢ 𝐶
→𝐿

Σ[Δ ⋅ 𝐵 → 𝐴] ⊢ 𝐶

𝐵 ⋅ Γ ⊢ 𝐴
→𝑅

Γ ⊢ 𝐵 → 𝐴

Γ[Δ] = Δ ⋅ (𝑖 ⋅ Γ[𝑡𝑖])(QR)

Comparison with (16) reveals that QRT is identical to QRST except that the
→𝑅𝑖 rule in QRT is replaced with a simpler rule →𝑅 in QRST:

(26)
Γ[𝐵] ⊢ 𝐴

→𝑅𝑖
𝑖 ⋅ Γ[𝑡𝑖] ⊢ 𝐵 → 𝐴

𝐵 ⋅ Γ ⊢ 𝐴
→𝑅

Γ ⊢ 𝐵 → 𝐴
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The original rule given above for QRT is on the left. The modified rule is the
standard right rule for → in Gentzen’s (1935) system LJ, which is a sequent
presentation of intuitionistic logic. This same rule of proof for implication
is used throughout the Type Logical Grammar literature.

It’s easy to see that every QRST proof can be reproduced by QRT + eta,
thanks to the following equivalence:

(27)
𝐵 ⋅ Γ ⊢ 𝐴

→𝑅𝑖
𝑖 ⋅ (𝑡𝑖 ⋅ Γ) ⊢ 𝐵 → 𝐴

eta
Γ ⊢ 𝐵 → 𝐴

≡
𝐵 ⋅ Γ ⊢ 𝐴

→𝑅
Γ ⊢ 𝐵 → 𝐴

In the other direction, any instance of→𝑅𝑖 in a QRT proof can be reproduced
in QRST using the following inferences:

(28)

Γ[𝐵] ⊢ 𝐴
→𝑅𝑖

𝑖 ⋅ Γ[𝑡𝑖] ⊢ 𝐵 → 𝐴
≡

Γ[𝐵] ⊢ 𝐴
QR↓

𝐵 ⋅ (𝑖 ⋅ Γ[𝑡𝑖]) ⊢ 𝐴
→𝑅

𝑖 ⋅ Γ[𝑡𝑖] ⊢ 𝐵 → 𝐴

This equivalence reveals that the QRT rule →𝑅𝑖 is a combination of the stan-
dard rule with an instance of QR↓. That is,→𝑅𝑖 has some structural reasoning
baked in. Because of this conflation of logical and structural inference, the
QRT version is able to limit the availability of →-right inferences to situa-
tions in which an abstraction created by QR↑ is present. This restriction is
precisely what limits QRT to Quantifier Raising with nothing added.

In order to establish the equivalence between QRT + eta and QRST, it re-
mains only to show that proofs in QRT + eta that contain eta inferences can
be faithfully simulated in QRST. Consider a QRT + eta proof that contains an
eta inference. First, note that there are only two ways that a structure of the
form 𝑖 ⋅ (𝑡𝑖 ⋅ Γ) can be created in a conclusion: by an instance of the QR struc-
tural rule, or by an instance of →𝑅𝑖. If an instance of QR is immediately fol-
lowed by eta reduction, the net result of the two inferences is no change, and
the pair of inferences can be safely omitted. If an instance of →𝑅𝑖 is immedi-
ately followed by eta reduction, this is exactly an →𝑅 inference, as shown in
(27). In all other cases, the order of an inference immediately followed by eta
reduction can be exchanged without affecting the final conclusion. It follows
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that any instance of eta reduction can be moved higher in the proof until it
meets the instance of either QR or →𝑅𝑖 that introduced the relevant index.
So every proof in QRT + eta has a semantically equivalent proof in QRST,
and vice versa.

Generalized lifting is straightforward in QRST:

e ⊢ e t ⊢ t
→𝐿

et ⋅ e ⊢ t
→𝑅

e ⊢ et,t

The Curry-Howard labeling for this proof gives exactly the generalized quan-
tifier semantics of Partee’s lift type shifter. The reasoning here is fully gen-
eral, and not specific to type e—any types 𝐴 and 𝐵 can be substituted here
for e and t.

As mentioned, QRST is a fragment of NL𝜆 (discussed in Barker 2019) with
the structural rule Exchange added. Since NL𝜆 is decidable and has the finite
readings property, and adding Exchange does not change these results, the
modified logic here is also decidable and has the finite readings property.

This means that we can freely allow unrestricted generalized type lifting
without compromising the formal properties of QR derivations. On the QR
derivation side, we can add the lift rule given above. On the logic side, we
can either use QRT with a structural rule of eta reduction added, or else
QRST, which has the standard rule of proof for implication. One additional
consideration in favor of going with QRST (besides having a standard rule of
proof for implication) is that there is a sound and complete interpretation
for QRST (see Barker 2019).

6.3 In-situ scope and direct compositionality

A semantic theory is directly compositional only if every syntactic constituent
has a well-defined semantic value. Here is what Barker & Jacobson (2007: p. 2)
say about Quantifier Raising:

[In the standard analysis using Quantifier Raising,] a verb phrase
such as saw everyone fails to have a semantic interpretation
until it has been embedded within a large enough structure for
the quantifier to raise and take scope (e.g., Someone saw every-
one). On such an analysis, there is no semantic value to assign
to the verb phrase saw everyone at the point in the derivation
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in which it is first formed by the syntax (or at any other point in
the derivation, for that matter). A directly compositional anal-
ysis, by contrast, is forced to provide a semantic value for any
expression that is recognized as a constituent in the syntax.
Thus if there are good reasons to believe that saw everyone is
a syntactic constituent, then a directly compositional analysis
must provide it with a meaning.

And indeed, if we examine either the QR derivation of Ann saw everyone
in (10) or the corresponding QRT proof in (17), there is no stage at which
the structure corresponding to saw everyone is established as a constituent:
there is no type associated with that particular substructure either in the QR
derivation or in the corresponding QRT proof, and no Curry-Howard labeling
that contains the semantic contribution of saw and everyone and nothing
else.

There are good reasons, of course, to suppose that verb phrases such as
saw everyone are constituents. For instance, this particular verb phrase can
serve as the antecedent of verb phrase ellipsis, as in Ann saw everyone, and
Bill did too, on the interpretation on which Bill saw everyone. In the kind of
directly compositional system that Barker and Jacobson have in mind, there
will be a semantic value computed for the structure saw everyone that will
conveniently make salient the semantic value captured by the ellipsis.

Quantifier Raising contrasts in this regard with Hendriks’s (1993) Flex-
ible Montague Grammar. In that system, expressions take displaced scope
entirely through strategically deployed type shifting, without any movement
or other structural reconfiguration. The twomain type shifters are Argument
Raising, which allows an arbitrary argument of a predicate to take scope over
the other arguments of that predicate, and Value Raising, which lifts the re-
sult type of a predicate into a type suitable for taking scope. (There is a third
type shifting rule that deals with de dicto/de re ambiguities that I will not
discuss here.) Flexible Montague Grammar is often held up as a paradigm
example of a directly compositional approach to scope taking (e.g., Jacobson
2012).

It turns out that all instances of Argument Raising and Value Raising
are theorems in QRST. To illustrate, Argument Raising applied to the first
argument of an extensional transitive verb (type eet) creates a shifted verb
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that takes a generalized quantifier direct object (type (et,t)et):

(29)
⋅⋅⋅

et,t ⋅ (1 ⋅ (e ⋅ (eet ⋅ 𝑡1))) ⊢ t
QR↑

e ⋅ (eet ⋅ et,t) ⊢ t
→𝑅

eet ⋅ et,t ⊢ et
→𝑅

eet ⊢ (et,t)et

Reading from the bottom up, the proof pushes each of the argument types of
the conclusion result across the turnstile, building a structure consisting of
the extensional verb and its arguments. The generalized quantifier argument
undergoes QR to take scope over the clause created by the saturated verb,
and the rest of the proof proceeds as in, e.g., (19). The Curry-Howard labeling
is exactly the same as the shifted meaning given in Flexible Montague Gram-
mar, that is, 𝜆𝑄𝜆𝑥.𝑄(𝜆𝑦.saw𝑦𝑥), where 𝑄 is a generalized quantifier and
saw is the meaning of the extensional transitive verb in question.

The fact that QRST validates Argument Raising and Value Raising means
that we can prove that the verb phrase saw everyone has each of the types
(and their corresponding denotations) that Flexible Montague Grammar gives
it. For instance, here is a proof that saw everyone is a predicate of type et:

(30)
⋅⋅⋅

et,t ⋅ (1 ⋅ (e ⋅ (eet ⋅ 𝑡1))) ⊢ t
QR↑

e ⋅ (eet ⋅ et,t) ⊢ t
→𝑅

eet ⋅ et,t ⊢ et

The Curry-Howard labeling is 𝜆𝑥.everyone(𝜆𝑦.saw𝑦𝑥). When this verb
phrase meaning is applied to the denotation of Ann (or Bill), the result is
a proposition that entails that everyone was seen by Ann (or Bill), as desired.

QRST is not a strictly directly compositional theory, since there are plenty
of derivations on which some syntactic structure does not receive a semantic
value, as we have seen. Nevertheless, we can compute the missing semantic
interpretations whenever desired. Barker (2007a) calls this kind of situation
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‘Direct Compositionality on Demand’. In the same spirit, we can reconstruct
the same type-shifted interpretations delivered by Flexible Montague Gram-
mar whenever desired, so we can also consider QRST to provide in-situ scope
taking on demand.

By the way, the fact that QRST is decidable with finite readings, along with
the fact that every Flexible Montague Grammar derivation can be reproduced
by a QRST proof means that (the Argument Raising/Value Raising core of)
Flexible Montague Grammar is also decidable with finite readings. As far as
I know, this is the first time that fact has been established.

What should we make of this situation? There is no difference between
QRT and QRST with respect to the structural rule that encodes scope-taking
(the QR rule). Yet in bare QRT, scope taking always requires movement and is
not directly compositional; but with the addition of lift (equivalently, replac-
ing →𝑅𝑖 with the standard →𝑅), we have in-situ analyses and direct compo-
sitionality on demand. Apparently, the difference between a pure movement
theory of scope and an in-situ, directly compositional theory resides not in
the conception or the implementation of scope-taking, but in the nature of
the larger inferential system in which the scope taking analysis is embedded.

One way to see this is to note that adding lift is not the only way to
embedQRT in a directly compositional system. For instance, another strategy
is to add a conjunction to the logic. After all, many logics (to put it mildly)
have at least one conjunction in addition to implication. In particular, Type
Logical grammars routinely include a conjunction, starting with Lambek 1958
(see Moortgat 1997).

Without going into complete detail, here’s how it works. First, we expand
the set of types to include 𝐴∧𝐵 for all types 𝐴 and 𝐵. Then QRT∧ (QRT with
conjunction) is QRT plus the following two standard logical inference rules:

(31)
Σ[𝐴 ⋅ 𝐵] ⊢ 𝐶

∧𝐿
Σ[𝐴∧ 𝐵] ⊢ 𝐶

Σ ⊢ 𝐴 Γ ⊢ 𝐵
∧𝑅

Σ ⋅ Γ ⊢ 𝐴∧𝐵

The interpolation theorem of Barker 2019 holds for QRT∧: given any theorem
Σ[Δ] ⊢ 𝐴, there is a type 𝐵 such that Δ ⊢ 𝐵 and Σ[𝐵] ⊢ 𝐴. That is, given
any specific proof, it is possible to assign an arbitrary substructure Δ a type
𝐵 that characterizes its role in that proof.

For instance, the proof in (17) establishes that Ann (saw everyone) is a
clause, that is, that e ⋅ (eet ⋅ et,t) ⊢ t. The construction given by the inter-
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polation theorem proposes et,t∧ eet as the type of the verb phrase.

(32) et,t ⊢ et,t

e ⊢ e et ⊢ et
→𝐿

eet ⋅ e ⊢ et
→𝑅𝑖

1 ⋅ (eet ⋅ 𝑡1) ⊢ eet
∧𝑅

et,t ⋅ (1 ⋅ (eet ⋅ 𝑡1)) ⊢ et,t∧ eet
QR

eet ⋅ et,t ⊢ et,t∧ eet

⋅⋅⋅
e ⋅ (e ⋅ eet) ⊢ t

→𝑅𝑖
2 ⋅ (e ⋅ (𝑡2 ⋅ eet)) ⊢ et t ⊢ t

→𝐿
et,t ⋅ (2 ⋅ (e ⋅ (𝑡2 ⋅ eet))) ⊢ t

QR
e ⋅ (et,t ⋅ eet) ⊢ t

∧𝐿
e ⋅ et,t∧ eet ⊢ t

cut
e ⋅ (eet ⋅ et,t) ⊢ t

See Appendix A.1 for a discussion of cut inferences. Using the standard
Curry-Howard semantics for conjunction, the semantic labeling for the verb
phrase (the left hand branch of the proof) is the ordered pair ⟨everyone,
𝜆𝑥.saw𝑥⟩, which means the label for the final conclusion is everyone(𝜆𝑦.
(𝜆𝑥.saw𝑥)𝑦 ann), which beta reduces to everyone(𝜆𝑦.saw𝑦 ann) as usual.

The interpolation theorem allows breaking up an arbitrary QR movement
into a series of strictly local hops. The addition of conjunction to the gram-
mar allows these intermediate stopping points to be given a type and a Curry-
Howard labeling that accurately tracks the non-local version of the deriva-
tion.

The conjunction approach matches the expressive power of QR more
closely than Flexible Montague Grammar. Not only does Flexible Montague
Grammar allow analyses that QRT does not (such as lifting), it fails to allow
analyses that QRT does, such as parasitic scope (as noted by Barker & Shan
2014: p. 70). In contrast to the addition of lift, adding a conjunction to QRT
is conservative, in the sense that there are no (conjunction-free) sequents
that are theorems of QRT∧ that were not already theorems of plain QRT. So
QRT∧ is pure QR but with direct compositionality on demand.

In any case, QRST and QRT∧ show that two different ways of extending
QRT can supply direct compositionality on demand. This means that whether
a grammar is directly compositional— that is, whether it provides a type and
an interpretation for every syntactic structure—does not depend on whether
it allows a long-distance movement operation such as QR, but depends in-
stead on properties of the system as a whole.
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7 Four additional issues

7.1 Unbound traces

As May noticed, unconstrained Quantifier Raising can create unbound traces.
This can happen when material containing the trace of a previously raised
scope taker raises higher than the lambda that binds the trace. The tradi-
tional solution for Quantifier Raising is to simply prohibit unbound traces.
There is no need to take any special action here, since any QR derivation that
creates an unbound trace will not be semantically coherent. Likewise, in QRT,
using QR↑ to create unbound traces will never lead to a complete and valid
proof.

7.2 Higher-order traces

There are many analyses that rely on higher-order traces, including semantic
reconstruction (e.g., Cresti 1995, Barker & Shan 2014) and split-scope analy-
ses (German kein (Jacobs 1980), donkey anaphora (Barker & Shan 2014), Had-
dock sentences (Bumford 2017), and cumulative readings (Charlow 2020, to
appear)). Higher-order traces are perfectly compatible with the system here.
See Charlow 2020 for a discussion of the details and the trade-offs of having
higher-order traces in a Quantifier Raising analysis.

7.3 Quantifier Raising is syntactic

As discussed in Section 6.1, LF is a theory of syntactic equivalence: a quan-
tifier in-situ in its surface position and the corresponding logical form cre-
ated by QR are syntactically equivalent. Likewise, on the logical side, the bi-
directional structural equation in QRT that characterizes Quantifier Raising
is a structural inference rule. Put another way, recall that the QR structural
rule does not affect semantic labeling at all, since the Curry-Howard corre-
spondence ignores structural inferences. It follows that displaced scope is
an essentially, purely syntactic phenomenon, on a par with other grammati-
cal phenomena that correspond to structural rules, such as scrambling (cor-
responding to the structural rule of Exchange) or so-called non-constituent
coordination (corresponding to the structural rule of associativity).
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7.4 The logic of movement?

If computing covert scope analyses is decidable, what about overt move-
ment? QRST is a fragment of NL𝜆 (with Exchange added), a substructural
logic first proposed in Barker 2007b. As shown in Barker & Shan 2014 and in
Barker 2019, NL𝜆 is able to account not only for in-situ scope-taking, but syn-
tactic movement as well. Because NL𝜆 is also decidable with finite readings, it
shows how to combine syntactic movement and scope-taking in a single uni-
fied grammar that is computationally well-behaved. A thorough exploration
of the logic of overt movement along the lines of this paper will have to wait
for another occasion.

8 Conclusion

Quantifier Raising has long been the standard tool for analyzing displaced
scope in natural language. When Quantifier Raising is combined with an ex-
plicit method for checking type compatibility, it is decidable, and provides a
strictly finite number of distinct semantic interpretations for any given ex-
pression, even in the presence of type lifting. These results taken together
justify full confidence in Quantifier Raising as a coherent and formally well-
behaved technique for analyzing scope.

A Appendix

This Appendix proves cut elimination for QRT, and gives details of the map-
pings from QR derivations to QRT and back again. It also gives a hint for the
problem posed in (13).

A.1 Cut elimination

A standard inference rule now enters the story, the cut rule.

(33)
Δ ⊢ 𝐴 Σ[𝐴] ⊢ 𝐵

cut
Σ[Δ] ⊢ 𝐵

The cut rule is valid in every logic, and expresses the transitivity of deduction.
(Well, almost every logic—see Weir 2015 for a discussion of non-transitive
logics that address certain paradoxes. Yet even these logics endorse a re-
stricted version of cut.) The cut rule says that if a type structure Δ has type
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𝐴, we can safely replace any occurrence of 𝐴 in some other proof with the
material in Δ without affecting the larger proof.

As usual for decidability proofs in logic, the decidability of QRT will hinge
on proving that the cut rule is admissible (redundant): that any theorem prov-
able using the cut rule can be proven without using cut.

(34) Cut elimination. Given an arbitrary QRT proof, there is an equivalent
proof that does not contain any cut inferences.

‘Equivalent’ here means same final sequent, and equivalent Curry-Howard
semantic labeling up to beta reduction.

The proof here is almost completely standard (see especially Gentzen
1935, Restall 2000, Jäger 2005: p. 41). Some vocabulary: the cut formula is
the formula shared by the two premises of the cut inference (the formula
matching 𝐴 in the schema above), and the active formula of a logical infer-
ence is the formula created in the conclusion that is not present in any of
the premises.

As in all cut elimination proofs, the general strategy here is to push each
cut inference higher in the proof until it reaches an axiom. When one premise
of a cut is an axiom, the other premise must be identical to the conclusion,
and the cut can be safely eliminated.

The structural rules do not impede pushing cut inferences higher in the
proof. Since structural rules do not add or subtract formulas, the cut formula
will be present in the premise of the structural inference, so the order of the
structural inference and the cut can always be swapped.

The logical rules have the subformula property, which means that every
formula in the conclusion appears in (exactly) one of the premises, with the
exception of the active formula. As a result, whenever the cut formula is not
the active formula in one of the premises of a cut inference, it is possible to
push the cut upwards.

The only remaining case to consider is when the cut formula is the active
formula in both of the premises (a principal cut).

Γ[𝐵] ⊢ 𝐴
→𝑅𝑖

𝑖 ⋅ Γ[𝑡𝑖] ⊢ 𝐵 → 𝐴

Δ ⊢ 𝐵 Σ[𝐴] ⊢ 𝐶
→𝐿

Σ[Δ ⋅ 𝐵 → 𝐴] ⊢ 𝐶
cut

Σ[Δ ⋅ (𝑖 ⋅ Γ[𝑡𝑖])] ⊢ 𝐶

The cut formula is 𝐵 → 𝐴, which is the active formula for both the →𝑅𝑖
inference and the →𝐿 inference. This cut can be transformed into a pair of
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smaller cuts using the same initial premises and arriving at the same final
conclusion.

Δ ⊢ 𝐵

Γ[𝐵] ⊢ 𝐴 Σ[𝐴] ⊢ 𝐶
cut

Σ[Γ[𝐵]] ⊢ 𝐶
cut

Σ[Γ[Δ]] ⊢ 𝐶
QR↓

Σ[Δ ⋅ (𝑖 ⋅ Γ[𝑡𝑖])] ⊢ 𝐶

Here, ‘smaller’ refers to the total number of base types and logical connec-
tives in the premises; see, e.g., Jäger 2005: p. 43 for a more detailed definition.
The only non-standard wrinkle in the proof is that the transformed reason-
ing with smaller cuts requires the addition of a QR↓ inference. The reason is
that the refactoring eliminates an instance of →𝑅𝑖, and since the →𝑅𝑖 rule in
effect incorporates an instance of reduction (as discussed in Section 6.2), it
is necessary to add a compensating reduction inference in the replacement
proof fragment.

A.2 Every QR derivation has an equivalent QRT proof

Assume we have a semantically coherent QR derivation 𝜎,𝜎1,… ,𝜎𝑛 where
𝜎𝑛 has type 𝐴. Our goal is to build a QRT proof of Σ ⊢ 𝐴, where Σ is a type
structure corresponding to 𝜎.

We build the proof starting from the bottommost conclusion and working
upwards. Building the proof divides into two phases. The first phase tracks
the instances of Quantifier Raising that constitute the QR derivation. The
initial (lowest) sequent is Σ ⊢ 𝐴, the next is Σ1 ⊢ 𝐴, and so on up to Σ𝑛 ⊢
𝐴. Each sequent is related to the one below it by an expansion inference
that exactly matches the corresponding instance of QR from the logical form
derivation.

The second phase uses the type labeling of 𝜎𝑛 to guide the instantiation
of the inference rules needed to prove Σ𝑛 ⊢ 𝐴. The construction proceeds
recursively based on two parameters: a labeled logical form 𝜋 which is a
part of the logical form 𝜎𝑛, and a type structure Π, which is the part of Σ𝑛
corresponding to 𝜋. Phase 2 begins with 𝜋 = 𝜎𝑛, and Π = Σ𝑛. Note that the
initial values for𝜋 andΠ are isomorphic up to the order of siblings, and each
recursive application of the construction will maintain that isomorphism.
Then there are three cases, corresponding to the three typing rules:
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T0. 𝜋 consists of a single word, in which case the sequent to be proven
has the form 𝑃′ ⊢ 𝑃, where 𝑃′ is a single type. By construction, 𝑃 is
the label of the (only) lexical item in 𝜋. So 𝑃 = 𝑃′, and we have an
instance of the axiom inference rule.

T1. 𝜋 consists of two daughters, 𝛿 and 𝛾, where neither is an index, and
Π = Δ ⋅ Γ. Because 𝜋 satisfies the typing rules, we can assume that
𝛿 has type 𝐵 and that 𝛾 has type 𝐵 → 𝐴 (or vice versa, with small
changes below). We extend the proof upwards as follows:

Γ ⊢ 𝐵 → 𝐴

Δ ⊢ 𝐵 𝐴 ⊢ 𝐴
→𝐿

Δ ⋅ 𝐵 → 𝐴 ⊢ 𝐴
cut

Δ ⋅ Γ ⊢ 𝐴

We’ve now reduced proving Δ ⋅ Γ ⊢ 𝐴 into two strictly smaller prob-
lems, namely, proving Δ ⊢ 𝐵 and proving Γ ⊢ 𝐵 → 𝐴. We recursively
call the construction algorithm twice: once with 𝜋 = 𝛿 and Π = Δ,
and again with 𝜋 = 𝛾 and Π = Γ.

T2. 𝜋 is an abstraction with form 𝑖 𝛾[𝑡𝑖], and Π = 𝑖 ⋅ Γ[𝑡𝑖], where 𝑖 is
an index. We instantiate the →𝑅𝑖 rule to extend the proof upwards,
where 𝐵 → 𝐴 is the label at the root of 𝜋:

Γ[𝐵] ⊢ 𝐴
→𝑅𝑖

𝑖 ⋅ Γ[𝑡𝑖] ⊢ 𝐵 → 𝐴

We now recursively call the construction algorithm with 𝜋 = 𝛾[𝑡𝑖]
and Π = Γ[𝐵]. The typing rule for abstractions guarantees that 𝛾 has
type 𝐴 when 𝑡𝑖 has type 𝐵, so we can be sure that the labeling of 𝛾
will guide construction of a valid proof of Γ[𝐵] ⊢ 𝐴.

These three cases show that we can always divide up the second phase of
proof building into strictly smaller problems. Since Σ is of finite complexity,
we will eventually reach a point at which either Δ or Γ is a single type, so
every subproblem will terminate in axiom instances.

The official inference rules for QRT given in (16) do not contain cut, and
the proof construction just given does contain cut; but of course the method
described in Section A.1 explains how to arrive at an equivalent cut-free
proof.
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A.3 Pushing structural inferences lower

QRT places no restrictions on when a QR inference can occur, so establishing
the correspondence between QRT proofs and QR derivations depends on
pushing structural inferences lower in the proof.

(35) Fact: whenever the conclusion of a QR instance is a premise of a log-
ical inference, the order of the inferences can be reversed without
affecting the proof.

To see why, consider first all possible configurations in which the conclusion
of an expansion inference is a premise of a following logical inference. In each
case, the order of the inferences can be reversed without affecting the initial
or the final sequent. For instance, if the expansion affects the first premise of
an instance of →𝐿, the expansion can safely be delayed till after the logical
rule. If the expansion affects the second premise, there are two subcases:
the raised element is the distinguished occurrence of 𝐴, or not. If not, the
expansion can be delayed, in which case the delayed expansion simply raises
the structure Δ ⋅ 𝐵 → 𝐴 instead of 𝐴. If the expansion affects the premise of
a →𝑅𝑖 inference, there are two subcases: the raised element is 𝐵, or not. If
not, the expansion can clearly be delayed. If so, the delayed expansion raises
the trace 𝑡𝑖 instead of 𝐵.

Here is an illustration of the last subcase:
Σ[𝐵 ⋅ (𝑗 ⋅ Π[𝑡𝑗])] ⊢ 𝐴

QR↑
Σ[Π[𝐵]] ⊢ 𝐴

→𝑅𝑖
𝑖 ⋅ Σ[Π[𝑡𝑖]] ⊢ 𝐵 → 𝐴

≡

Σ[𝐵 ⋅ (𝑗 ⋅ Π[𝑡𝑗])] ⊢ 𝐴
→𝑅𝑖

𝑖 ⋅ Σ[𝑡𝑖 ⋅ (𝑗 ⋅ Π[𝑡𝑗])] ⊢ 𝐵 → 𝐴
QR↑

𝑖 ⋅ Σ[Π[𝑡𝑖]] ⊢ 𝐵 → 𝐴

The beginning and ending sequents for the unswapped inferences on the
left are identical to the beginning and ending sequents for the swapped in-
ferences.

A similar argument holds for swapping reduction inferences with logical
inferences.

A.4 Every QRT proof has an equivalent QR derivation

Let 𝑝 be any QRT proof whose final conclusion is Σ ⊢ 𝐴, where Σ does not
contain any abstraction structures. Our goal is to use 𝑝 to find a semantically
coherent QR derivation𝜎,𝜎1,… ,𝜎𝑛 such that Σ is a type structure for𝜎 and
𝜎𝑛 has type 𝐴.
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Requiring the final sequent of 𝑝 to be abstraction-free is parallel to re-
quiring that QR derivations begin with a logical form that has not yet under-
gone any Quantifier Raising operations. This restriction can be relaxed, but
in order to maintain the correspondence between QRT proofs and QR deriva-
tions, we would also need to generalize QR derivations to include sequences
of logical forms in which the initial logical form has already undergone some
number of Quantifier Raising operations. The decidability result and the fi-
nite readings result would continue to apply.

Relying on the results in the previous sections of the Appendix and the
decidability result for QRT, we begin by replacing 𝑝 with an equivalent proof
𝑝′ that is cut-free, in which each QR↑ inference follows every logical infer-
ence, and in which all coindexed QR↓/QR↑ inference pairs have been elimi-
nated (along the lines sketched in the decidability proof). After these adjust-
ments, all QR↑ inferences will be gathered together as the final 𝑛 inferences
of 𝑝′. Then the QR↑ inferences in 𝑝′ induce a QR derivation𝜎,𝜎1,… ,𝜎𝑛 such
that each Σ𝑖 is a type structure for 𝜎𝑖, and each logical form is related to the
previous one by an application of QR in lock step with the corresponding
expansion inferences that relate the structures in the sequence Σ,Σ1,… ,Σ𝑛.

In order to demonstrate that this is a semantically coherent QR deriva-
tion, we must show how 𝑝′ determines a type labeling for 𝜎𝑛 that satisfies
the typing rules and on which 𝜎𝑛 has type 𝐴. Because 𝜎𝑛 and Σ𝑛 are iso-
morphic (up to sibling order), it will be convenient to associate labels with
the structure of Σ𝑛, relying on the isomorphism to map the labels onto the
corresponding nodes of 𝜎𝑛.

Consider the portion of 𝑝′ that proves Σ𝑛 ⊢ 𝐴, that is, the portion of 𝑝′

up to but not including the final expansion inferences. Let 𝑝″ be this portion
of 𝑝′. The argument proceeds by induction on the structure of 𝑝″.

The base case is when 𝑝″ consists of an axiom inference of the form
𝐴 ⊢ 𝐴. Any logical form labeled with the left hand side (trivially) has the
result type, so we have a labeling for 𝜎𝑛.

For the inductive case of the argument, consider the final inference in 𝑝″.
By the recursive assumption, we can assume that we have a suitable labeling
for each premise. That is, if the premise isΔ ⊢ 𝐵, we can assume that we have
a labeling for the structure Δ that satisfies the typing rules such that the root
ofΔ has label 𝐵. We need to prove thatΔ𝑛 ⊢ 𝐴. Since all expansion inferences
have already been pushed lower in the proof, there are three subcases to
consider: →𝐿, →𝑅𝑖, and QR↓. We reason as follows:
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→𝐿:
Δ ⊢ 𝐵 Σ[𝐴] ⊢ 𝐶

→𝐿
Σ[Δ ⋅ 𝐵 → 𝐴] ⊢ 𝐶

By the inductive assumption applied to the left premise, we have a la-
beling of Δ on which it has type 𝐵 according to the typing rules. Then
the newly-created substructure (Δ⋅𝐵 → 𝐴) has type 𝐴, by virtue of the
typing rule T1, so we add the label 𝐴 to the newly-created substruc-
ture. By the inductive assumption applied to the right premise, there
is now a complete labeling of the conclusion sequent on which it has
type 𝐶.

→𝑅𝑖:
Γ[𝐵] ⊢ 𝐴

→𝑅𝑖
𝑖 ⋅ Γ[𝑡𝑖] ⊢ 𝐵 → 𝐴

Since the labeling of Γ[𝐵] has type 𝐴, the newly created structure 𝑖 ⋅
Γ[𝑡𝑖] has type 𝐵 → 𝐴 by virtue of the typing rule T2. We label the new
structure accordingly.

QR↓:
Σ[Γ[Δ]] ⊢ 𝐶

QR↓
Σ[Δ ⋅ (𝑖 ⋅ Γ[𝑡𝑖])] ⊢ 𝐶

Let 𝐴 be the label at the root of Γ[Δ], and let 𝐵 be the label at the
root of Δ. Then the newly created structure 𝑖 ⋅ Γ[𝑡𝑖] has type 𝐵 → 𝐴
by virtue of the typing rule T2, and so the larger newly created struc-
ture Δ ⋅ (𝑖 ⋅ Γ[𝑡𝑖]) has type 𝐴, by virtue of the typing rule T1. We label
the newly created structures accordingly. Since the larger newly cre-
ated structure and Γ[Δ] both have type 𝐴, the recursive assumption
guarantees that the newly-extended labeling has type 𝐶.

When the labeling on Σ𝑛 is copied onto 𝜎𝑛, the labeling satisfies the typing
rules, and justifies the claim that 𝜎𝑛 has type 𝐴.

A.5 Hint for the problem posed in (13)

One of the two semantically distinct analyses requires at least one instance
of quantifier raising; the other requires at least two. The paraphrases of the
interpretations are They all gave them the same excuse and They gave them
all the same excuse. See Bumford & Barker 2013 for a discussion of how the
type given to same accounts for the ambiguity in the presence of Quantifier
Raising.
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