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Abstract Across languages, certain logically natural concepts are not lex-
icalized, even though they can be expressed by complex expressions. This
is for instance the case for the quantifier not all. In this paper, we propose
an explanation for this fact based on the following idea: the logical lexicon
of languages is partly shaped by a tradeoff between informativity and cost,
and the inventory of logical expressions tends to maximize average infor-
mativity and minimize average cost. The account we propose is based on a
decision-theoretic model of how speakers choose their messages in various
situations (a version of the Rational Speech Act model).

Keywords: lexicon, decision-theoretic pragmatics, implicature, indirect implicature,
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1 Introduction

The Aristotelian square of opposition consists of the following four cate-
gories of logical statements:
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1. Universal (𝐴): All As are Bs.

2. Negative universal (𝐸): No As are Bs.

3. Existential (𝐼): Some As are Bs.

4. Negative existential (𝑂): Some As are not Bs / Not all As are Bs.

An observation due to Horn (1973) is that English can express 𝐴, 𝐸 and 𝐼
more concisely than it can express 𝑂. Specifically, English can use a quantify-
ing determiner to express 𝐴, 𝐸 and 𝐼 statements, but there is no correspond-
ing word for𝑂 statements; instead onemust use an additional negation. This
can be seen in (1).

(1) a. All As are s. / Every A is a B.
b. No As are Bs.
c. Some As are Bs.
d. *Nall As are Bs. / *Nevery A is a B.

The general conclusion is that the abstract logical operators correspond-
ing to 𝐴, 𝐸 and 𝐼 are (usually) lexicalized while 𝑂 never is. This observation
can be generalized to other languages as well as to temporal quantifiers and
modal operators. For instance, ‘not always’ is less likely to be lexicalized
than ‘sometimes’, ‘never’ and ‘always’ across languages, and ‘unnecessary’,
which is lexicalized in English, is across languages less often lexicalized than
‘possible’, ‘necessary’ and ‘impossible’.

At first sight, this observation is somewhat surprising, since the four op-
erators all satisfy familiar constraints on possible quantifiers: not only con-
servativity, but also, in this case, monotonicity.1 Furthermore, while 𝑂 and
𝐴 are each other’s negation, and one might think that this would make hav-
ing both unnecessary, 𝐼 and 𝐸 are each other’s negation. Similarly, while 𝐼 is
the dual of 𝐴, 𝑂 is the dual of 𝐸. The difference in terms of lexicalization
between 𝐼 and 𝑂 is therefore unexpected.

Horn (1973) suggested an explanationwhy only three operators are needed:
because they are logically related to one another (𝐴 entails 𝐼, 𝐸 entails 𝑂, 𝐴
and 𝑂 and 𝐼 and 𝐸 are one another’s negation), the four operators only allow
us to distinguish between three basic situations or categories of worlds:

1 Barwise & Cooper (1981) suggested that conservativity and monotonicity are semantic uni-
versals. See also Chemla, Buccola & Dautriche 2019 for a recent discussion of a number of
semantic properties, including monotonicity, which make some concepts more likely than
others to be lexicalized across languages.
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(2) 𝑤∀: Worlds where all As are Bs
(𝐴 and 𝐼 are true, 𝐸 and 𝑂 are false);

𝑤∃¬∀: Worlds where some but not all As are Bs
(𝐼/𝑂 are true, 𝐸/𝐴 false);

𝑤¬∃: Worlds where no As are Bs
(𝐸 and 𝑂 are true, 𝐴 and 𝐼 are false).

Furthermore, the mechanism of scalar implicatures lets the speaker indicate
in which of these situations we are with just three operators. 𝐴 and 𝐸 state-
ments can be used to indicate that we are in 𝑤∀ and 𝑤¬∃ respectively. Then,
if the speaker utters 𝐼, the listener may reason that 𝐴 is false, as otherwise
the speaker could have been more informative by saying 𝐴. For instance, an
𝐼 statement like (3) is understood in most contexts to imply that the stronger
𝐴 statement in (4) is false, or, equivalently, that we are in 𝑤∃¬∀; this is a well-
known instance of the scalar implicature of an 𝐼 statement. Thus, with just
three operators, we are able to refer to the 3-way partition of worlds outlined
in (2) with maximal precision; adding 𝑂 to the mix would not allow us to be
any more informative.

(3) Some of my colleagues are nice people.

(4) All of my colleagues are nice people.

Horn’s idea, however, does not explain why, in a given family of logical
operators, it is always the set {𝐴,𝐸, 𝐼} which is lexicalized, and not the other
3-element set {𝐴,𝐸,𝑂}, with which a symmetric argument could be made.
Indeed, 𝑂 statements also trigger an inference to the effect that the cor-
responding 𝐸 statement is false. Furthemore, as we will discuss, speakers
sometimes do use 𝑂 statements, and there are contexts where 𝑂 statements
are more felicitous than 𝐼 statements (cf., e.g., the contrast in (12) below).

Horn (1973) proposes that 𝐸 and 𝑂, being negative (downward-entailing),
are marked in some sense and therefore dispreferred. Katzir & Singh (2013)
generalize Horn’s idea by proposing that at a certain level, logical operations
are expressed in terms of certain primitives; this has the consequence that
𝐸 and 𝑂 have more complex representations. This is in line with findings
suggesting that monotone-decreasing operators are harder to process than
monotone-increasing ones (Geurts & van Der Slik 2005).

Both Horn (1973) and Katzir & Singh (2013) essentially attempt to break
the symmetry between 𝐼 and 𝑂 by assuming that 𝑂 is inherently marked
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in some sense, making a lexicon that includes 𝑂 rather than 𝐼 dispreferred.
Katzir & Singh (2013) implement this idea by assuming a specific inventory
of cognitive primitives such that monotone increasing operators have sim-
pler representations. We should note however, that in the absence of such
hypotheses about cognitive primitives, there is no reason to believe that 𝐼
is intrinsically computationally less complex that 𝑂. Consider for instance
a measure of complexity based on the semantic automata that can repre-
sent a given quantifier (see, e.g., Steinert-Threlkeld & Szymanik 2019, Katzir,
Lan & Peled 2020). An automaton for 𝐼 takes a sequence of 0s and 1s and
returns ‘true’ if the sequence contains at least one occurrence of 1. It is
trivial to convert such an automaton into one with exactly the same struc-
ture which returns ‘true’ if the sequence contains at least one occurrence
of 0, thus encoding the meaning of 𝑂. As to the observed cognitive cost of
sentences containing negation and other monotone-decreasing operators, it
should be noted that such sentences tend to be syntactically more complex
than their ‘positive’ counterparts, so that we should not conclude that this
cost is specifically tied to the logical meaning of the relevant operators. We
discuss these points with more details in Section 4.2, in connection with re-
cent proposals that are to some extent related to ours.2

We approach the problem from a very different angle. First we will argue
that there are principled reasons why, irrespective of which corners of the
Aristotelian square are lexicalized, 𝑂-statements are expected to be less fre-
quently used than 𝐼-statements. Given the well-established relation between
frequency and lexicalization (the more frequently an expression is used, the
more likely it is to be lexicalized), this might provide an explanation for why
𝐼 tends to be lexicalized but 𝑂 does not. Second, we will show that under
certain plausible assumptions, lexicalizing {𝐴,𝐸, 𝐼} is optimal compared to
{𝐴,𝐸,𝑂}, in that it maximizes the expected utility that speakers can receive
from using the language, where the utility of a single message in a single
occasion of use depends on a trade-off between how informative the mes-
sage is in this situation and how costly it is. The account we will propose
is in line with the view that a number of features of natural languages can
be understood as maximizing the overall utility of a language (cf. Gibson
et al. 2019 and the references cited therein). We will make use of the same

2 See, among others, Penka 2011, Zeijlstra 2011, Buccola & Spector 2016, for arguments that
monotone-decreasing quantifiers such as no or fewer than 10 are to be syntactically decom-
posed into a negation-like operator and an upward-entailing quantifier, based in part on the
availability of so-called ‘split-scope’ readings.
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information-theoretic definition of utility that is used in the Rational Speech
Act model of pragmatics (RSA; Goodman & Stuhlmüller 2013, and Bergen,
Levy & Goodman 2016, where a cost-term is introduced in the utility function
of messages), but our account is otherwise not couched in a game-theoretic
framework. For both lines of explanation, a crucial ingredient of our account
is the observation (already made in Chater & Oaksford 1999) that, on average,
an 𝑂-statement (e.g., ‘Not all of the guests were drunk’) is less informative
than its corresponding 𝐼-statement (e.g. ‘Some of the guests were drunk’).

On our approach the asymmetry will be derived directly from the truth
conditions of the operators, together with independently motivated assump-
tions about the meanings of lexical predicates and general principles of lan-
guage use. In particular, cognitive or morphological primitives will play no
role in our explanation.3

We will proceed as follows: in Section 2, we will explain why 𝐼-statements
are expected to be used more frequently that 𝑂 statements. In Section 3, we
provide a model of the expected utility of a lexicon, in which the expected
utility of a lexicon based on {𝐴,𝐸, 𝐼} has a greater expected utility than one
based on {𝐴,𝐸,𝑂}.

2 Why 𝐼 is expected to be more frequent than 𝑂

It would be no surprise to find, in a corpus study, that 𝐼-sentences of the
form Some of the NPs VP (e.g., Some of the guests were drunk) have on aver-
age more occurrences than corresponding 𝑂-sentences of the form Not All
of the NPs VP or The NPs AUX not all VP (e.g., Not all of the guests were drunk,
The guests were not all drunk). Given that, in English and in other languages,
𝑂 is not lexicalized,𝑂-sentences are bound to be syntactically more complex
than 𝐼-sentences, which would be enough to explain the observed difference
in frequency of occurrences, on the plausible assumption that, everything
else being equal, more complex constructions are less frequent than less
complex ones. Such a corpus-based observation would not provide any con-
vincing explanation for the fact that 𝐼 is lexicalized and 𝑂 is not, since the
lexicalization facts might in fact explain the observed frequencies.

3 Several recent works (Denić, Steinert-Threlkeld & Szymanik 2021, Uegaki forthcoming: a.o.)
also explore the inventory of lexical quantifiers from an information-theoretic perspective,
but their approach relies on specific assumptions on lexical primitives or meaning spaces
similar to those made by Katzir & Singh (2013). We will discuss the relevance of these analy-
ses to Horn’s puzzle and their similarities and differences with our proposal in Section 4.2.
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What we want to argue here is that even if the four corners of the Aris-
totelian square were lexicalized, 𝑂-sentences would still be less frequently
used than 𝐼-sentences.

Imagine a speaker who knows that, say, some but not all of the guests at
a certain party were drunk. The two ‘universal’ corners of the square cannot
be used, as they yield false statements. If the speaker is to use one of the four
quantifiers of the square, the choice to make is, then, between the following
sentences:

(5) a. Some of the guests were drunk.
b. Not all of the guests were drunk.

Now, both sentences trigger a ‘some but not all’ implicature, so once this
is taken into account they should be equally effective. If we only consider the
literal meaning of both sentences, and use a notion of informativity based on
entailment, neither sentence is more informative than the other, since there
is no entailment relation in either direction. On such a view of informativity,
Grice’s maxim of Quantity cannot help us choose between the two sentences.
However, suppose that we use instead a probabilistic notion of informativity,
where, in a given context, a proposition 𝜙 is more informative than a propo-
sition 𝜓 if, before she hears the sentence, the hearer considers 𝜙 less likely
than 𝜓. In that case, we have to ask which of the two propositions in (5) is
the least likely to be true in the context of utterance, from the point of view
of the listener. In many contexts, the probability that no guest is drunk (i.e.,
the probability of the negation of (5a)) is higher than the probability that all
guests are drunk (i.e., the probability of the negation of (5b)). Equivalently,
in such contexts, (5a) is less likely to be true than (5b), hence, given the per-
spective we adopt here, more informative. Assuming that speakers tend to
prefer more informative sentences, (5a) will be used in a such a context.

Suppose now that, in most contexts, 𝐼-statements are more informative
than 𝑂-statements in this sense. Then we would predict that, irrespective of
lexicalization, 𝐼 would be more frequently used than 𝑂. Such a prediction
might in turn help explain the lexicalization facts.

To substantiate an account of this type, we need to a) establish that in-
deed the choice between 𝐼 and 𝑂 is partly governed by probabilistic infor-
mativity, and b) that there are good reasons to think that across contexts 𝐼
is indeed more informative (in this sense) than 𝑂.

5:6



Explaining gaps in the logical lexicon of natural languages

Before turning to these issues, we will provide a model of message choice
which captures the reasoning we have just sketched, inspired by the RSA
model of pragmatics (Goodman & Stuhlmüller 2013).

2.1 A simple model of the pragmatics of the Aristotelian square

We assume that there is a certain set of possible worlds Ω, and a set of mes-
sages ℳ. The speaker knows exactly what the world is, while the listener’s
prior beliefs are represented by a probability distribution over Ω. The lis-
tener’s prior beliefs are known to the speaker and more generally part of
the Common Ground. Upon hearing a message, the listener updates their
belief distribution. Thus, a model of the listener’s behaviour is a function
𝐿(𝑤|𝑚) giving the probability the listener assigns to world 𝑤 after having
heard message 𝑚. One particular listener behavior is that of a literal listener.
The literal listener 𝐿0 has a prior distribution 𝑃0 over worlds. They also have
a notion of the semantics of each message: to each message 𝑚, they assign
a set of worlds J𝑚K where the message is true. Upon hearing 𝑚, the listener
conditionalizes their belief distribution on 𝑚 being true:

(6) 𝐿0(𝑤|𝑚) = 𝑃0(𝑤|J𝑚K) = ⎧⎪⎪
⎨⎪⎪⎩

0 if 𝑤 ∉ J𝑚K,
𝑃0(𝑤)

𝑃0(J𝑚K) if 𝑤 ∈ J𝑚K.
We assume for the time being that the speaker chooses her message 𝑚

in the following manner: if they are in world 𝑤, they pick the message that
maximizes the probability that the listener will assign to 𝑤 after processing
it.4 Wewrite 𝑆(𝑤;𝐿) to refer to themessage chosen by a speaker who believes
𝑤.5

(7) 𝑆(𝑤;𝐿) = argmax𝑚 𝑃0(𝑤|𝑚)

4 Here we depart from the standard RSA model, where the speaker is not fully rational, and
does not always pick the best message, but, rather, picks each message with a probability
which is increasing with the informativity of the message. In this particular respect, the
model presented in this section is similar to the earlier Optimal Answer model of Benz &
Van Rooij (2007) and to Franke’s (2011) Iterated Best Response Model, among others. See
Footnote 16 for further discussion.

5 In principle, two messages could be exactly tied and be both optimal, so 𝑆(𝑤;𝐿) is not a
function. In our model, this will happen when the prior probability distribution 𝑃0 of the
listener is such that 𝑃0(𝑠∃) = 𝑃0(𝑠¬∀) For simplicity, we ignore the possibility of such a tie,
that is, we do as if such a prior distribution were not possible, which does not affect our
conclusions in any way.
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Now, let us assume that worlds are individuated by whether all (𝑤∀), some
but not all (𝑤∃¬∀), or no (𝑤¬∃) guest is drunk. Let us assume that there
are four messages: 𝐴 (All guests are drunk), 𝐸 (No guest is drunk), 𝐼 (Some
guests are drunk), 𝑂 (Not all guests are drunk). Now, if in fact no guest is
drunk, it is obvious that the best message is 𝐸, since after processing it the
listener assigns 1 to the world where no guest is drunk (and the three other
messages fail to achieve the same effect). Similarly if in fact all guests are
drunk, the best message is 𝐴. The interesting case is the some-but-not-all
world (denoted by 𝑤∃¬∀). In such a situation the two messages that could
be used are 𝐼 and 𝑂. Given (7), the speaker will choose 𝐼 if and only if the
following holds:

(8) 𝐿(𝑤∃¬∀|𝐼) > 𝐿(𝑤∃¬∀|𝑂)

Now:

(9) a. 𝐿(𝑤∃¬∀|𝐼) = 𝑃0(𝑤∃¬∀|J𝐼K)
= 𝑃0(𝑤∃¬∀|{𝑤∃¬∀,𝑤∀})

= 𝑃0(𝑤∃¬∀)
𝑃0(𝑤∃¬∀) + 𝑃0(𝑤∀)

b. 𝐿(𝑤∃¬∀|𝑂) = 𝑃0(𝑤∃¬∀|J𝑂K)
= 𝑃0(𝑤∃¬∀|{𝑤∃¬∀,𝑤¬∃})

= 𝑃0(𝑤∃¬∀)
𝑃0(𝑤∃¬∀) + 𝑃0(𝑤¬∃)

It then follows straightforwardly that:

(10) 𝐼 is better than 𝑂 as a message if and only if 𝑃0(𝑤∀) < 𝑃0(𝑤¬∃).

Equivalently (with 𝑠∃ = {𝑤∃¬∀,𝑤∀} and 𝑠¬∀ = {𝑤∃¬∀,𝑤¬∃}):

(11) 𝐼 is better than 𝑂 as a message if and only if 𝑃0(𝑠¬∀) > 𝑃0(𝑠∃),
i.e., if and only if 𝑃0(J𝑂K) > 𝑃0(J𝐼K)

This was the expected result: the speaker chooses the message which ex-
presses the proposition that was the least likely to be true given the prior
distribution, i.e, whose surprisal value is the highest.

Now, as noted by a reviewer, this prediction crucially relies on the view
that the speaker, when choosing her message, measures its informativity
(surprisal value) in terms of its literal interpretation. That is, we are dis-
cussing here the behavior of the fully rational version of the level-1 Speaker
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of the Rational Speech Act model, who assumes she is talking to a literal lis-
tener. A more sophisticated speaker might assume that she talks to a prag-
matic listener. Because the pragmatic listener would interpret both ‘some’
and ‘not all’ as meaning ‘some but not all’, both are going to be equally in-
formative, and our proposal in this paper could not work if we modeled the
speaker in this way. We think we can argue for our choice on the following
grounds. First, as discussed in the next section, it seems to be a fact that
the choice between ‘some’ and ‘not all’ is partly governed by the relative in-
formativity (measured in terms of surprisal) of their literal meaning (cf. our
discussion of the examples in (12) and (13) below). Second, scalar implicatures
are in any case not always derived by the listener (in the experimental liter-
ature on scalar implicatures, rates of scalar implicature derivation are never
very close to 100%, and are typically lower than for prototypical entailments).
If the speaker believes that there is a small chance that she is talking to a lit-
eral listener (or a listener who believes that the speaker is not knowledgeable
about the alternative, or one who takes the relevant alternative—say ‘all’ in
the case of ‘some’—to be irrelevant), she will always be better off choosing
the message whose literal meaning is the most informative.6

2.2 Choosing between 𝐼 and 𝑂

Is the prediction in (11) correct?
Imagine that we are talking about an international scientific conference

where it is expected that everybody will give her talk in English. If the speaker
happens to know that, contrary to expectations, some talks will not be given
in English but in French, using (12a) below seems much more appropriate
than using (12b).

(12) a. Not every talk will be in English.
b. Some talks will be in English.

Correspondingly, (13b) seems much more appropriate than (13a) in the same
situation:

(13) a. Not every talk will be in French.

6 We could of course consider amore sophisticatedmodel where the speaker is uncertain as to
whether she talks to the literal listener or to a pragmatic listener (or as to the value of other
parameters, such as the underlying Question Under Discussion the listener is entertaining),
but qualitatively the outcome would be the same.
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b. Some talks will be in French.

This is entirely in line with an explanation based on probabilistic expecta-
tions. In the specified context, the prior probability of the proposition that
all talks will be given in English is higher than that of the proposition that
no talk will be given in English. Correspondingly, the prior probability of
(12a) (resp. (13b)) is smaller than that of (12b) (resp. (13a)), which predicts a
preference for (12a) (resp. (13b)).

As observed by Roni Katzir (p.c.), one independent reason for the felicity
contrasts in (13) and (12) might be due to the fact that some triggers a not-
many-implicature, while not every might trigger a many-implicature. That
is, for instance, (12b) might be interpreted as some talks will be in English,
but not many of them, which in the situation we described might not be what
the speaker intends to convey. And (13b) would be interpreted as conveying
some but not many of the talks will be in French, which, on the contrary, might
be exactly what the speaker wants to say. If the choice is between these two
meanings, then only if the speaker happens to believe that many talks will be
in French would she choose (13a), and this might play a role in the observed
contrasts. However, we don’t think the contrasts are markedly different if
some is replaced with many. Suppose we are again in a context where it’s
highly expected (though not certain) that all talks will be in English, and we
compare the following two sentences:

(14) a. Not every talk will be in English.
b. Many talks will be in English.

It seems to us that in such a context, one would be much more surprised
to hear (14b) than (14a). Yet if both sentences in (14a) are strengthened into
‘many but not all talks will be in English’, we should not observe such an
effect. The contrast is, however, fully expected in our account, simply be-
cause (14a) expresses a proposition whose prior probability, in the specified
context, is smaller than that of (14b).

2.3 Is 𝐼 most often more informative than 𝑂?

Is it in fact the case that, in most contexts, the condition stated in (10)
(𝑃0(𝑤∀) < 𝑃0(𝑤¬∃)) holds? Even though this is very hard to assess based on
actual data, there are good reasons to think that it holds, as already discussed
in Chater & Oaksford 1999. These authors observe, first, that the properties
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denoted by nouns, verbs and adjectives typically hold of a minority of ob-
jects (they call this observation the ‘rarity assumption’): there are less cats
than non-cats, and less red things than non-red things and presumably most
often there are less people who are singing than people who aren’t. Note
also that vague gradable adjectives like tall are typically interpreted in such
a way that a minority of individuals within a comparison class count as tall
(see Kennedy 2007 for discussion, among others). There are of course obvi-
ous counterexamples (thing, exist, …), but overall, for most lexical predicates
B, fewer things have the property B than the property non-B.7 Second, Chater
& Oaksford observed that if predicates tend to be true of a small number
of objects (as seems to be the case), then if we pick two predicates A and B
randomly, we are much more likely to find that their intersection is empty
than to find that A and B intersect (i.e., 𝑃0(𝑠∃) < 𝑃0(𝑤¬∃)), which entails the
condition in (10).

In practice, however, the predicates 𝐴 and 𝐵 used in sentences of the
form ‘𝑄 𝐴s are 𝐵s’ tend to be related in terms of their general subject mat-
ter. Typically,𝐴 denotes some small, cohesive region of the conceptual space
(such as a species of animals, a nationality, a trade, the guests at a specific
party, the talks at a specific conference, etc.), and 𝐵 denotes a property that
is well defined for 𝐴-objects (being of a certain color, doing a certain kind of
activity, etc.). In these situations, the probability that No A is a B (𝑃0(𝑤¬∃))
is not necessarily smaller than the probability that some As are B (𝑃0(𝑠∃)).
However, to the extent that, on most occasions, a randomly picked 𝐴 is still
more likely not to have property 𝐵 than to have it (because predicates tend to
denote minorities within a natural class), it will still be the case that it is less
likely for all 𝐴s to have property 𝐵 than it is for all 𝐴s not to have property
𝐵, which is exactly the condition stated in (10) (𝑃0(𝑤¬∃) > 𝑃0(𝑤∀)). Impor-
tantly, this condition is weaker than Chater and Oaksford’s assumption that
𝑃0(𝑠∃) < 𝑃0(𝑤¬∃), and is entailed by it. In Appendix B, we provide a model
which explains why a lexicon where lexical predicates 𝐵 typically apply to a
minority of objects within a natural class 𝐴 is optimal from an information-

7 There are several reasons why this could be true. One is that ‘natural’ concepts typically
cover a connected and relatively homogeneous region of the space of possible concepts (Gär-
denfors 2004). To give an example, the dog-concept is arguably a more natural concept than
the non-dog concept, because the concept of ‘non-dog’ includes many different types of ob-
jects which are intuitively extremely different from each other. This is the case even if we
restrict our attention to a “natural” super-class of dogs, such as land animals or pets. In
Appendix B, we discuss a further reason why the ‘rarity’ assumption may hold, based on
information-theoretic considerations.
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theoretic point of view. From this reasoning, we expect 𝐼 statements to be
more informative than 𝑂 statements in a majority of situations where both
kinds of statements are true.8

3 A model of the expected utility of a lexicon

The link between frequency of use and lexicalization can in principle be due
to at least two types of pressures. One type of pressure is learnability: the
more an expression is used, the easier it is to memorize it as a unit (see
Hendrickson & Perfors 2019 for relevant discussion). The idea would be that,
starting from a lexicon where the four corners are lexicalized, it will be eas-
ier for children to remember 𝐼 than 𝑂, because they will hear 𝐼 more often
than 𝑂. As a result, such a language would be more likely to lose 𝑂 than
𝐼 when it is transmitted to the next generation. An explanation of this sort
seems somewhat dubious in this specific case, since𝑂-statements (expressed
by ‘not all’ in English), though (as we argued) rarer than 𝐼-statements, are
still not extremely rare. But there is in any case another well-known route
to the same result (Zipf 1935, Piantadosi, Tily & Gibson 2011, among many
others): a language that lexicalizes frequent meanings as opposed to rare
ones minimizes the average communicative effort of speakers (and parsing
effort of listeners), compared to one where infrequent meanings, but not
frequent meanings, would be lexicalized (in such a language, the meanings
that you want to express most often require more words, and greater syntac-
tic complexity). Conversely, speakers who seek to minimize their effort are
likely to prefer inaccurate, simple expressions to accurate, complex ones; in
a language where frequent meanings are lexicalized and therefore simple to
express, this situation will be rarer and the average quality of information
exchange will be higher.

In this section, we will offer a model of the expected utility of a lexicon
in which a notion of cost is introduced. In any given situation, the model
will assign a utility to each message, which will depend both on the cost
of the message and its informativity (measured in relation with the prior

8 The fact that a some-statement is on average more informative than a not-all-statement is
not sufficient by itself to explain why the former is lexicalized while the latter is not. Very
informative messages are by definition true in fewer situations than less informative ones,
so even though they are particularly useful when they are used, there are also fewer situa-
tions where they can be used. We certainly do not want to predict that in general messages
corresponding to unlikely events or situations are more likely to be lexicalized!
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probability distribution that characterizes the situation), and speakers are
assumed to select the message that has the highest utility. We will be able
to compute the expected utility of different lexica across occasions of uses.
We will compare the expected utility of the attested lexicon {𝐴,𝐸, 𝐼} with
that of the unattested one, {𝐴,𝐸,𝑂}. This approach formalizes the intuition
that different lexicalization choices might lead to different outcomes in aver-
age communicative efficiency. In this section we offer a semi-formal account
which contains the gist of our model (the fully explicit model is presented in
Appendix A).

We aim to compare the expected utility of two languages. In the first lan-
guage, the quantifiers 𝐴, 𝐸 and 𝐼 are lexicalized, while the quantifier 𝑂 is
expressed by a syntactically complex expression, while in the second one,
𝐴, 𝐸, and 𝑂 are lexicalized and 𝐼 is expressed by a complex expression. We
summarize this in (15), where the superscript + signals that a quantifier is
more complex than all others, which will translate into a specific cost :

(15) a. ℳ𝐼 = {𝐴,𝐸, 𝐼,𝑂+},
b. ℳ𝑂 = {𝐴,𝐸,𝑂, 𝐼+}.

We take the messages without the superscript to have a null cost, and the
one with a superscript to have a positive cost 𝑐.

A situation of utterance consists of a pair ⟨𝑤,𝑃0⟩, where 𝑤 is the actual
world, by hypothesis known to the speaker, and 𝑃0 is the probability distribu-
tion over worlds, corresponding to the beliefs of the listener in that situation
(and that of the speaker before the speaker came to know 𝑤). As in RSA mod-
els that include message costs (Bergen, Levy & Goodman 2016), the utility of
a message 𝑚 in a situation ⟨𝑤,𝑃0⟩ is given by:

(16) 𝑈(𝑚,𝑤,𝑃0) = log(𝑃0(𝑤|J𝑚K)) − cost(𝑚).

Now, as discussed above, when 𝑤 is either 𝑤∀ or 𝑤¬∃, the message with
the greatest utility is, in each language, 𝐴 or 𝐸, since these messages have
a null cost and are maximally informative. The comparison of the expected
utility of each language thus hinges on what happens in the ∃¬∀-world. Let
𝑚 be the ‘cheap’ message in the language under consideration (so 𝑚 = 𝐼 in
ℳ𝐼 and 𝑚 = 𝑂 in ℳ𝑂) and 𝑚+ be the expensive one (so 𝑚+ = 𝑂+ in ℳ𝐼
and 𝑚+ = 𝐼+ in ℳ𝑂).

We have:

(17) a. 𝑈(𝑚,𝑤∃¬∀, 𝑃0) = log(𝑃0(𝑤∃¬∀|J𝑚K))
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b. 𝑈(𝑚+,𝑤∃¬∀, 𝑃0) = log(𝑃0(𝑤∃¬∀|J𝑚+K)) − 𝑐

Now:

(18) 𝑃0(𝑤∃¬∀|J𝑚K) = 𝑃0({𝑤∃¬∀} ∩ J𝑚K)
𝑃0(J𝑚K) = 𝑃0(𝑤∃¬∀)

𝑃0(J𝑚K) .9

Likewise,

(19) 𝑃0(𝑤∃¬∀|J𝑚+K) = 𝑃0(𝑤∃¬∀)
𝑃0(J𝑚+K)

Therefore,

(20) a. 𝑈(𝑚,𝑤∃¬∀, 𝑃0) = log(𝑃0(𝑤∃¬∀|J𝑚K)) = log 𝑃0(𝑤∃¬∀)
𝑃0(J𝑚K)

= log(𝑃0(𝑤∃¬∀)) − log(𝑃0(J𝑚K))
b. 𝑈(𝑚+,𝑤∃¬∀, 𝑃0) = log(𝑃0(𝑤∃¬∀)) − log(𝑃0(J𝑚+K)) − 𝑐

We assume that the speaker will pick the message with the greatest
utility. That is, the speaker will use 𝑚+ if and only if 𝑈(𝑚+,𝑤∃¬∀, 𝑃0) >
𝑈(𝑚,𝑤∃¬∀, 𝑃0), which is, given the equalities above, whenever the following
condition holds:

(21) log(𝑃0(J𝑚K)) − log(𝑃0(J𝑚+K)) > 𝑐

The informativity of a proposition 𝜙 relative to 𝑃0, noted Info𝑃0(𝜙) is
defined (in information theory) as− log(𝑃0(𝜙)). That is, the less probable the
proposition expressed by a message is, the more surprising and informative
it is. So we can rephrase the above condition as:

(22) Info𝑃0(J𝑚+K) − Info𝑃0(J𝑚K) > 𝑐.

This makes sense: it says that the speaker will choose the more costly
message just in case the gain in information relative to the cheaper message
exceeds the extra cost of the more costly message (in case she believes both
messages).

When applied to each language, this gives us:

9 Since 𝑚 is either 𝑂 or 𝐼, {𝑤∃¬∀} ∩ J𝑚K reduces to {𝑤∃¬∀}.
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(23) a. In ℳ𝐼, the costly message (𝑂+), which means not all, is used (in
a situation where the speaker believes the world is 𝑤∃¬∀) if:

log(𝑃0(𝑠∃)) − log(𝑃0(𝑠¬∀)) > 𝑐,

i.e., if:
Info𝑃0(𝑠¬∀) − Info𝑃0(𝑠∃) > 𝑐;

otherwise the cheap message 𝐼 is used.
b. In ℳ𝑂, the costly message (𝐼+), which means some, is used if:

log(𝑃0(𝑠¬∀)) − log(𝑃0(𝑠∃)) > 𝑐,

i.e., if:
Info𝑃0(𝑠∃) − Info𝑃0(𝑠¬∀) > 𝑐;

otherwise the cheap message 𝑂 is used.

Now, in order to reason about expected utility, we need to take into ac-
count the fact that 𝑃0 is not constant, that is, it varies across conditions of
use and choices of predicates (technically, this means that 𝑃0 is itself a ran-
dom variable). We assume, following our discussion in Section 2.3, that while
𝑃0 varies, it is more often the case that 𝑃0(𝑠∃) < 𝑃(𝑠¬∀) than the reverse
(see Appendix A for a precise way of expressing this assumption). Thus, the
difference in informativity between 𝐼/𝐼+ and 𝑂/𝑂+, call it 𝑄 defined by (24),
will have a probability distribution across situations that is biased towards
positive values. Figure 1 illustrates what such a distribution might look like.

(24) 𝑄 = Info𝑃0(𝑠∃) − Info𝑃0(𝑠¬∀)

Focusing again on the case where the speaker believes 𝑤∃¬∀, we can es-
sentially distinguish between two types of situations.

i. Situations where the more costly message is used.
In both languages, the costly message is used in “some but not all”
situations only if it is highly informative compared to the less costly
one, so that the disadvantage it has in terms of cost is overridden.
Now, in ℳ𝑂, where the costly message is 𝐼, this will happen when the
prior probability of 𝑠∃ is sufficiently low compared to that of 𝑠¬∀ (so
that the costly message, which means 𝑠∃, will be highly informative),
namely when 𝑄 > 𝑐. This corresponds to the right-hand region on
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Figure 1 An example of a density for 𝑄 = log(𝑃0(𝑠¬∀)) − log(𝑃0(𝑠∃)) (=
Info𝑃0(𝑠∃) − Info𝑃0(𝑠¬∀)), biased towards larger values—which
captures the fact that most often 𝐼-statements are more infor-
mative than 𝑂-statements. The 𝑥-dimension represents possible
values of 𝑄; it is divided into three intervals. In the first interval,
speakers of both languages say 𝑂 or 𝑂+, because the meaning
it expresses (𝑠¬∀) is much more informative than that expressed
by 𝐼 or 𝐼+ (𝑠∃); in the central interval, speakers of both languages
say the cheaper message, because the difference in informativity
(measured by 𝑄) between the two messages is smaller than their
difference in cost; in the third one, they say 𝐼 or 𝐼+, because its
meaning (𝑠∃) is much more informative than the meaning of 𝑂
or 𝑂+ (𝑠¬∀). The probability of each of these three cases is given
by the area under the curve. The dotted blue line marks the limit
between the domain where 𝑂, 𝑂+ are more informative than 𝐼,
𝐼+ and the one where the reverse is true.

Figure 1. Meanwhile, in ℳ𝐼, this will happen when the prior probabil-
ity of 𝑠¬∀ is sufficiently low (so that the costly message, which means
𝑠¬∀, is highly informative): this corresponds to the left-hand region on
Figure 1, where 𝑄 < −𝑐. Given our assumption that the first situation
happens more often than the second one, we will use more often the
costly message in ℳ𝑂 than in ℳ𝐼 —on Figure 1, this corresponds to
the fact that the right-hand region has a larger area under the curve
than the left-hand region. This creates a disadvantage for ℳ𝑂 on the
cost side.
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ii. Situations where the less costly message is used.
When the prior 𝑃0 is not sufficiently biased so as to make the costly
message optimal, speakers always use the simpler message in “some
but not all” cases (i.e., 𝐼 in ℳ𝐼 and 𝑂 in ℳ𝑂). This corresponds to
the middle area in Figure 1, where |𝑄| < 𝑐 (the absolute difference
in informativity between the two messages is smaller than their dif-
ference in cost). In this case, the comparison of the utilities achieved
by the two languages hinges on how informative the simpler message
is relative to 𝑃0: when 𝑃0 is such that 𝑃0(𝑠∃) < 𝑃0(𝑠¬∀), the most in-
formative message is 𝐼, and speakers of ℳ𝑂, who say 𝑂, incur a loss
of utility. When the priors are such that 𝑃0(𝑠∃) > 𝑃0(𝑠¬∀), the most
informative message is𝑂, and speakers ofℳ𝐼, who say 𝐼, incur a sym-
metric loss of utility. Now, because of our assumption that the first
situation (𝑃0(𝑠∃) < 𝑃0(𝑠¬∀)) holds most of the time, which we assume
remains true when one restricts oneself to less biased priors, the for-
mer situation will be more frequent than the latter; on Figure 1, this
corresponds to the fact that the right-hand half of the middle area is
larger than the left-hand half. Essentially, ℳ𝐼 will sometimes lead to
diminished informativeness, but this will occur less often than equiv-
alent losses underℳ𝑂. Here again, there is an advantage forℳ𝐼, this
time on the informativity side.

This informal reasoning suggests that on average, the speaker of ℳ𝐼 will
receive a higher utility than that of ℳ𝑂, both because she will use the costly
message less often, and because when both types of speakers use the cheaper
message, the speaker of ℳ𝐼 will be, most often, more informative than the
speaker of ℳ𝑂.

In Appendix A, we provide a formally explicit model which captures this
reasoning.

4 Discussion

4.1 Summary

Let us take stock.
In Section 2 we suggested the following explanation for the non-lexical-

ization of 𝑂. English has a word for bakers but no word for people who don’t
sell bread, it has a word for dogs but no word for non-dog animals, and so
on. It follows that, on average, an 𝑂-statement is less informative than an
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𝐼-statement, so that in situations where both types of statements are true,
speakers will most often use 𝐼. Given that less frequent meanings tend to be
lexicalized less than frequent meanings, it is to be expected that 𝑂 will not
be lexicalized, across languages, to the same extent as 𝐼 is.

In Section 3, we have offered a more explicit approach where we compare
the overall expected utility of different lexica, showing that a lexicon based
on {𝐴,𝐸, 𝐼} has a higher expected utility than one based on {𝐴,𝐸,𝑂}.

Our approach is limited in scope in that we only compare {𝐴,𝐸, 𝐼} to
{𝐴,𝐸,𝑂}, but not to lexica with a different numbers of lexicalized corners of
Artistotle’s square. In particular, we do not really explain why lexicalized 𝑂
is so rare. In principle, one might think that {𝐴,𝐸, 𝐼,𝑂} would be the ideal
lexicon: speakers do feel the need to make𝑂 statements from time to time.10

We need to assume that some independent pressure to keep the lexicon
minimal prevents the lexicalization of all four items. Ideally, this pressure
would be part of our model.11

Similarly, one may wonder what is the expected utility of lexicalizing
fewer corners. Thus, we would hope that lexicalizing {𝐴, 𝐼} is optimal within
the two-element lexica, since this seems to be what is most common in
natural languages (Katzir & Singh 2013). Taking compositionality into ac-
count (one can construct the missing messages by adding a negation), we
would then compare the expected utilities of {𝐴,𝐸+, 𝐼,𝑂+}, {𝐴+, 𝐸, 𝐼+,𝑂}
and {𝐴,𝐸, 𝐼+,𝑂+}. It turns out that this time, there are terms of differing
signs in the differences, and our current assumptions do not let us conclude
as to the overall sign. Our approach therefore does not let us decide between
these lexica, at least in its present form.

Finally, as we noted, the observation that 𝐼 is more likely to be lexical-
ized than 𝑂 holds not only in the domain of quantifiers over individuals,
but also in the temporal and modal domains, as discussed by Horn (1973).

10 In the model discussed in Section 3, they do so when 𝑂-statements are significantly more
informative than 𝐼-statements, which will happen from time to time.

11 One could argue that when one takes into account their scalar implicatures, 𝐼 and 𝑂 state-
ments are truth-conditionally equivalent, in that they denote the 𝑤∃¬∀ situation. Therefore,
there is no sense in lexicalizing operators for both; in fact, Aristotle’s identification of four
basic statements might be less relevant to natural language than the natural partition of
possible worlds into just three sets. This is essentially the line of argument of Horn (1973:
pp. 251–260). However, as we pointed out, 𝑂 statements are attested and are not used in the
same contexts as 𝐼 statements (cf. our discussion of examples (12) and (13) in Section 2); for
this reason, we are reluctant to just “shave off [the 𝑂 category] with Occam’s razor” (Horn
1973: p. 259).

5:18



Explaining gaps in the logical lexicon of natural languages

Our approach would not have much difficulty to generalize to such cases, on
the plausible assumption that, on average, the argument of such modal and
temporal operators denote propositions which have a lower prior probability
than their negation.

4.2 Comparison with other approaches

A strain of recent works have offered information-theoretic accounts for a
number of properties of the lexicon of natural languages, based on the idea
that languages maximize communicative efficiency through a trade-off be-
tween informativity and some notion of lexical complexity. This approach is
most easily applied to content words, for which we can model the meaning
space and the prior probabilities independently of linguistic facts. Examples
include colour words (Zaslavsky et al. 2018), kinship terms (Kemp & Regier
2012), and animal names (Zaslavsky et al. 2019). The main challenge that any
attempt to extend the idea to logical vocabulary faces is that it needs to de-
fine notions of informativity and complexity over the abstract domains that
it discusses, and how to do so is not entirely straightforward.

Steinert-Threlkeld 2020, Denić, Steinert-Threlkeld & Szymanik 2021, and
Uegaki forthcoming are among the works that take up this challenge. All
three of these works show that the attested lexica of quantifiers (Steinert-
Threlkeld 2020, Denić, Steinert-Threlkeld & Szymanik 2021) or connectives
(Uegaki forthcoming) in Natural Language tend to perform better than unat-
tested lexica on a certain metric of efficiency, and Uegaki (forthcoming)
specifically points out that this fact can be seen as a solution to Horn’s puz-
zle. They adopt specific notions of informativity and complexity for mes-
sages.

On the informativity side, some variant of expected listener surprisal,
similar to what we ourselves use, is universally adopted. This requires a no-
tion of prior probability on possible situations. Steinert-Threlkeld (2020) and
Uegaki (forthcoming) choose to represent situations as (some description of)
possible worlds and to assign the same probability to each world. Thus, it is
impossible for them to demonstrate any effect of “real-world” distributions.
The flat prior also makes it so that informativity alone cannot distinguish
upwards and downwards monotone quantifiers, in the sense that 𝐼 and 𝑂
(and 𝐴 and 𝐸 as well) will necessarily be equally informative, because they
are true in exactly the same number of worlds. The solution to Horn’s puzzle
will therefore have to come from the complexity side. The way both Steinert-
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Threlkeld (2020) and Uegaki (forthcoming) determine complexity is that they
adopt a specific logical language based on common mathematical notation,
including for instance the Boolean operators ∧, ∨ and ¬, and they take a
message’s complexity to be the length of the shortest formula that repre-
sents it. As a consequence of this choice, downwards monotone operators
are assumed from the get-go to be more complex than upwards monotone
ones. We therefore expect lexica including 𝑂 over 𝐼 to be dispreferred, which
is in fact what Uegaki (forthcoming) finds. Thus, as a solution to Horn’s puz-
zle, this approach is very similar to Horn’s (1973) original proposal that there
is an inherent semantic markedness to negation, and does not offer in turn
an explanation for the latter fact (in this respect it is also similar to Katzir &
Singh 2013). Where it improves on Horn’s hypothesis is that it makes more
specific predictions: Uegaki (forthcoming) is able to explore the entire space
of possible connective vocabulary.

An alternative to formulating arbitrary hypotheses about prior distribu-
tions and complexity is to derive them from linguistic data. This is what
Denić, Steinert-Threlkeld & Szymanik (2021) do. They adopt a classification
of indefinites as well as a feature-based analysis due to Haspelmath (2001).
They can then define the complexity of a message as the size of the smallest
feature bundle that characterizes it. As far as the prior probability of each
category is concerned, they estimate it from corpus data. Denić, Steinert-
Threlkeld & Szymanik (2021) do not discuss Horn’s puzzle, and since they
are exclusively concerned with indefinites, their model does not allow for a
message meaning 𝑂.12 We can still ask whether their method could offer a
solution, if we were to adopt a similar classification of quantifiers (or con-
nectives) and we found that inventories that satisfy Horn’s generalization are
more optimal. The main potential issue is one we already raised in Section 2.
In principle, we want to derive informativity from the actual probability that a
message is true. When we estimate the distribution of messages from corpus
data, we are looking instead at the probability that a message is produced.
If we consider that speakers take into account considerations of cost and
complexity in their production, as in the model of Section 2.1, then what we
are measuring already reflects the effects of cost and of the vocabulary of
the language. Thus, if we find that positive existentials (𝐼) are more common
than negated universals (𝑂), it might be that this is because they are easier

12 It should be noted that in saying that “languages lexicalize 𝐼,” we have been abstracting away
from the fact that most languages have a number of expressions with existential meaning,
e.g. English some, a, a certain, any, some ... or other, whichever etc.
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to express, and not the other way around. There is a parallel concern on the
complexity side: if we base our representation of messages on morphologi-
cal patterns or cross-linguistic lexicalization patterns, then we are going to
assign a more complex representation to 𝑂 from the beginning. These two
biases will make it so that our model already internalizes Horn’s observation
and cannot be used as an explanation for it.

The conclusion of this discussion is that existing information-theoretic
approaches to the logical vocabulary of languages would not offer a com-
plete explanation for Horn’s puzzle, because the models they use already
internalize in some form either Horn’s observation that 𝑂 is uncommon, or
Horn’s hypothesis that negation is marked.13 In contrast, we have derived
the difference between the attested and the unattested lexicon entirely from
the truth conditions of the messages, including a specific assumption about
the prior probabilities of messages being true (as opposed to the probabil-
ities of messages being used). We have also been able to derive the result
analytically while leaving our assumptions somewhat abstract; for instance
we have not been assuming particular probability distributions or particular
costs. The price we pay is the extreme specifity of our result: as we have al-
ready noted, we are unable to extend the comparison beyond the two lexica
that we discuss, and we do not account for any sort of pressure on lexicon
size.

Our hope is that, despite the limitations we have just pointed out, and
beyond the issue of Horn’s puzzle, our work can serve as a further illustra-
tion of how explicit decision-theoretic models of pragmatics can in principle
account, through the notion of expected utility, for certain universal tenden-
cies in the logical lexicon of natural languages. Additionally, we hope to have
shown that information-theoretic models can be used in linguistic research

13 In addition to the works we discussed, a somewhat different route is taken by Steinert-
Threlkeld & Szymanik (2019), who show that certain semantic universals pertaining to quan-
tifiers, such as permutation invariance, make quantifiers easier to learn by a Neural Network
model. This could suggest that those universals emerge as an effect of learnability pressure.
In this approach the learning properties of the network determine a notion of fitness that
does not involve specific representational choices, beyond the architecture of the network
itself. As in the other studies we discuss however, the observations that are presented to the
model are drawn from an arbitrary distribution, so that no effect stemming from real-world
prior distributions can be demonstrated; furthermore, formal properties of the model and
the mode of presentation of the data (consisting in binary encodings of models) make it so
that flipping downwards and upwards monotone quantifiers (such as flipping 𝐼 and 𝑂, or 𝐴
and 𝐸) cannot affect the results. Thus the model offers no insight towards Horn’s puzzle.
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not just for broad, data-based analyses, but also to derive analytically specific
qualitative points, in the same way as traditional formal analyses.

Appendix A Comparing the utilities of two lexica

Preliminaries In order to make the reasoning presented in Section 3 fully
explicit, we need to make part of our model the fact that 𝑃0, the prior dis-
tribution, is not given, and instead varies across situations. We can do this
by making 𝑃0 a random variable of its own, which ranges over possible prob-
ability distributions over the universe Ω (recall that Ω is the 3-element set
{𝑤¬∃,𝑤∃¬∀,𝑤∀}).

This new assumption allows us to define the expected utility of a lexicon.
For a lexicon ℳ and a prior 𝑃0, let us denote as 𝑚(𝑃0,ℳ) the message
that a speaker of ℳ will use in the situation ⟨𝑤∃¬∀; 𝑃0⟩ (when the world is
𝑤∃¬∀ and the prior is 𝑃0). The utility achieved by the speaker in this situation
can be written as 𝑈(𝑚(𝑃0,ℳ),𝑤∃¬∀, 𝑃0). Taking the expected value of this
quantity over all potential prior distributions 𝑃0, we obtain what we can call
the conditional expected value of the lexicon,14 which we write as �̄�(ℳ) and
which is given in (25). This quantity represents the average utility achieved
by the speaker of ℳ in 𝑤∃¬∀-situations.

(25) �̄�(ℳ) = E[𝑈(𝑚(𝑃0,ℳ),𝑤∃¬∀, 𝑃0)]

�̄�(ℳ) is what we will use to compare ℳ𝐼 andℳ𝑂 in a formal way: what
we want to derive is that �̄�(ℳ𝐼) > �̄�(ℳ𝑂), corresponding to the idea that
speakers of ℳ𝐼 achieve greater utility on average.

We also need to formalize the idea that 𝑃0 is most often such that
𝑃0(𝑤¬∃) > 𝑃0(𝑤∀), that is, that in most situations speakers consider that
no As being Bs is more likely than all As being Bs. There are probably vari-
ous ways this could be done. Here is what we are going to assume: for any
particular distribution 𝑃′

0 which is biased in favor of 𝑤∀ relative to 𝑤¬∃, we
assume that the distribution 𝑃″

0 which encodes a bias of the same magnitude

14 What makes �̄�(ℳ) “conditional” is that we only consider what happens in 𝑤∃¬∀-situations.
It would be natural to define “expected utility” as the expectation of the utility achieved taken
across all possible situations. �̄�(ℳ) is what we get if we condition on the fact that the world
is 𝑤∃¬∀. The reason that we consider �̄�(ℳ) and not “proper” expected utility here is that
the two languages we want to compare achieve exactly the same utility in ¬∃-situations as
well as ∀-situations, and therefore these situations will not matter to the comparison. In
other words, whichever language yields a greater conditional expected utility also yields a
greater expected utility.
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in the opposite direction is more likely to be the one that characterizes the
listener’s epistemic state. That is, for a particular distribution 𝑃′

0, consider
𝑃″
0 which is like 𝑃′

0, except that the probabilities of 𝑤¬∃ and 𝑤∀ are flipped:

(26) 𝑃″
0 (𝑤¬∃) = 𝑃′

0(𝑤∀)
𝑃″
0 (𝑤∃¬∀) = 𝑃′

0(𝑤∃¬∀)
𝑃″
0 (𝑤∀) = 𝑃′

0(𝑤¬∃)

If 𝑃′
0(𝑤¬∃) > 𝑃′

0(𝑤∀), then 𝑃″
0 (𝑤¬∃) < 𝑃″

0 (𝑤∀), and vice-versa. In other
words, at most one of 𝑃′

0 and 𝑃″
0 is such that the condition we expect to be

the most common case is true. We are going to assume that this one is more
likely to be the actual 𝑃0 than the other:

(27) Bias assumption (BA): if Φ is the density of the variable 𝑃0, and if 𝑃′
0

and 𝑃″
0 are related in the way described above, then:

a. If 𝑃′
0(𝑤¬∃) > 𝑃′

0(𝑤∀), then Φ(𝑃′
0) > Φ(𝑃″

0 ).
b. If 𝑃′

0(𝑤¬∃) < 𝑃′
0(𝑤∀), then Φ(𝑃′

0) < Φ(𝑃″
0 ).

The assumption in (27) is how we will capture the fact that most of the
time 𝑃0(𝑤¬∃) > 𝑃0(𝑤∀). If a particular choice of 𝑃0 does not respect the
condition, we assume that it is less likely than its mirror image that does
respect it.

The BA is strictly stronger than our initial statement that “𝑃0(𝑤¬∃) >
𝑃0(𝑤∀) is usually true”, which one would most naturally implement as (28).
(28) is in fact insufficient to derive the desired result: it might be that (28)
is true, and that �̄�(ℳ𝐼) < �̄�(ℳ𝑂). This will be the case for instance if the
most probable values of 𝑃0 are either such that 𝑃0(𝑤¬∃) is much smaller than
𝑃0(𝑤∀), or such that 𝑃0(𝑤¬∃) is slightly greater than 𝑃0(𝑤∀). However, we
think that there is no reason why the distribution of 𝑃0 should exhibit such
an asymmetrical shape. The distributions commonly used in mathematical
modeling usually have simple shapes that are obtained from smooth defor-
mations of perfectly symmetrical ones, with a single maximum or minimum.
While real-world data can of course depart from this pattern, it is usually
due to a well-identified categorical effect and we see no reason to think that
it should happen in this instance. If we restrict ourselves to common para-
metric families, it is in fact the case that (28) and the BA are equivalent; in
other words, any natural choice of parametrization for 𝑃0 is such that the
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assumption in (28) would entail the BA.15 For this reason, we do not think
that our implementation of the bias assumption affects the generality of our
result.

(28) P(𝑃0(𝑤¬∃) > 𝑃0(𝑤∀)) >
1
2

The proof We can now prove the desired result: if the bias assumption
holds, then �̄�(ℳ𝐼) > �̄�(ℳ𝑂).

In Section 3, we derived the behaviour of speakers in our model. We can
describe this behaviour in terms of the quantity 𝑄 defined in (29); such a
description is given in (30).

(29) 𝑄 ∶= log(𝑃0(𝑠¬∀)) − log(𝑃0(𝑠∃))
(30) a. If 𝑄 < −𝑐, then 𝑚(𝑃0,ℳ𝐼) = 𝑂+ and 𝑚(𝑃0,ℳ𝑂) = 𝑂.

b. If 𝑄 > 𝑐, then 𝑚(𝑃0,ℳ𝐼) = 𝐼 and 𝑚(𝑃0,ℳ𝑂) = 𝐼+.
c. If |𝑄| < 𝑐, then 𝑚(𝑃0,ℳ𝐼) = 𝐼 and 𝑚(𝑃0,ℳ𝑂) = 𝑂.

Note that 𝑄 is exactly the difference in informativity between 𝐼 and 𝑂:
𝑄 = Info(J𝐼K) − Info(J𝑂K). This makes the above pattern intuitive: when 𝐼 is
much more informative, say 𝐼 or 𝐼+; when 𝑂 is much more informative, say

15 We think that the most natural choice of a parametrization for a 3-way probability distribu-
tion like 𝑃0 would be a Dirichlet distribution Dir(𝛼,𝛽,𝛾). Once we adopt this parameteriza-
tion, (28) and the BA are both equivalent to 𝛼 > 𝛾, so that the BA is innocuous.

Another, even simpler way to parameterize 𝑃0 is to make the simplifying assumption
that, when considering a sentence of the form 𝑄𝐴𝐵, the prior probability that a given 𝐴-
individual 𝑥 has property 𝐵 is independent of the probability that some other individual
𝐴-individual 𝑦 has property 𝐵, and that this probability is uniform across 𝐴s. Then, 𝑃0
depends entirely on the parameter 𝑝0, the probability that a given A is a B, and the number
of 𝐴-individuals. We have: 𝑃0(𝑤∀) = 𝑝𝑛

0 and 𝑃0(𝑤¬∃) = (1 − 𝑝0)𝑛, where 𝑛 is the number
of As. Thus the condition 𝑃0(𝑤¬∃) > 𝑃0(𝑤∀) is equivalent to 𝑝0 < 0.5, and (28) is equivalent
to the density of 𝑝0 having more mass on the left-hand side of the graph. If 𝑝0 follows a
Beta law (as would be most natural for a Bernoulli parameter), the distribution has a simple
shape (e.g., a bell shape in the case where the parameters are greater than 1) and (28) will
be true if and only if the density function tilts to the left, which would make the BA true as
well.

A consequence of these facts is that if we had demonstrated our point through numer-
ical simulations, as is common in the literature applying information-theoretic models to
linguistics, the distributions we would have looked at would have been such that our result
would have followed from (28). Because we want to derive an analytical result instead, we are
forced to make our assumptions explicit, but all in all this makes our result more general,
not less.
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𝑂 or 𝑂+; when the difference is small, say the cheapest. Since 𝑄 is a function
of the random variable 𝑃0, it is also a random variable.

What follows is a formal calculation that does not invoke any specific
insight; the reader who is not interested in checking the correctness of it can
skip straight to (36). We begin by decomposing �̄� based on the value of 𝑄:

(31) �̄�(ℳ𝐼) = P(𝑄 < −𝑐)E[𝑈(𝑂+,𝑤∃¬∀, 𝑃0) |𝑄 < −𝑐]
+ P(𝑄 > 𝑐)E[𝑈(𝐼,𝑤∃¬∀, 𝑃0) |𝑄 > 𝑐]
+ P(|𝑄| < 𝑐)E[𝑈(𝐼,𝑤∃¬∀, 𝑃0) | |𝑄| < 𝑐]

Furthermore, for any condition 𝐶:

(32) E[𝑈(𝑂+,𝑤∃¬∀, 𝑃0) |𝐶] = E[log𝑃0(𝑤∃¬∀) − log𝑃0(𝑠¬∀) − 𝑐 |𝐶]
= E[log𝑃0(𝑤∃¬∀) |𝐶] − E[log𝑃0(𝑠¬∀) |𝐶] − 𝑐

And similarly:

(33) E[𝑈(𝐼,𝑤∃¬∀, 𝑃0) |𝐶] = E[log𝑃0(𝑤∃¬∀) − log𝑃0(𝑠∃) |𝐶]
= E[log𝑃0(𝑤∃¬∀) |𝐶] − E[log𝑃0(𝑠∃) |𝐶]

Putting these two together:

(34) �̄�(ℳ𝐼) = P(𝑄 < −𝑐)E[log𝑃0(𝑤∃¬∀) |𝑄 < −𝑐]
+ P(𝑄 > 𝑐)E[log𝑃0(𝑤∃¬∀) |𝑄 > 𝑐]
+ P(|𝑄| < 𝑐)E[log𝑃0(𝑤∃¬∀) | |𝑄| < 𝑐]
− P(𝑄 < −𝑐)E[log𝑃0(𝑠¬∀) |𝑄 > −𝑐]
− P(𝑄 > 𝑐)E[log𝑃0(𝑠∃) |𝑄 > 𝑐]
− P(|𝑄| < 𝑐)E[log𝑃0(𝑠∃) | |𝑄| < 𝑐]
− P(𝑄 < −𝑐)𝑐

We can do the same thing with �̄�(ℳ𝑂), and we derive:

(35) �̄�(ℳ𝑂) = P(𝑄 < −𝑐)E[log𝑃0(𝑤∃¬∀) |𝑄 < −𝑐]
+ P(𝑄 > 𝑐)E[log𝑃0(𝑤∃¬∀) |𝑄 > 𝑐]
+ P(|𝑄| < 𝑐)E[log𝑃0(𝑤∃¬∀) | |𝑄| < 𝑐]
− P(𝑄 < −𝑐)E[log𝑃0(𝑠¬∀) |𝑄 > −𝑐]
− P(𝑄 > 𝑐)E[log𝑃0(𝑠∃) |𝑄 > 𝑐]
− P(|𝑄| < 𝑐)E[log𝑃0(𝑠¬∀) | |𝑄| < 𝑐]
− 𝑐P(𝑄 > 𝑐)

5:25



Émile Enguehard, Benjamin Spector

When we take the difference, most terms cancel out:

(36) �̄�(ℳ𝐼) − �̄�(ℳ𝑂) =
𝒞

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑐(P(𝑄 > 𝑐) − P(𝑄 < −𝑐))
+ P(|𝑄| < 𝑐)E[log𝑃0(𝑠¬∀)− log𝑃0(𝑠∃) | |𝑄| < 𝑐]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℐ=E[𝑄 | |𝑄|<𝑐]

The remaining terms can be given intuitive interpretations. 𝒞 is the dif-
ference in expected cost between the two languages. Speakers of ℳ𝐼 use
costly messages when 𝑄 < −𝑐, while speakers of ℳ𝑂 use costly messages
when 𝑄 > 𝑐. The other term, ℐ, is the difference in expected informativity.
The two languages result in different informativity only in situations where
their speakers use the cheapest message, that is, when |𝑄| < 𝑐; in these
situations, as we have seen, 𝑄 quantifies the difference in informativity.

In Section 3, we argued that both terms should be positive. This fact in
fact follows from the bias assumption. To begin with, let us call𝜙 the density
of 𝑄. It follows from the bias assumption that the following holds:

(37) For any 𝑞 > 0, we have 𝜙(𝑞) > 𝜙(−𝑞).

This is because mirroring 𝑃0 as done per the bias assumption turns 𝑄
into −𝑄, and the variant that we assume to be more likely is also the one
that yields a positive value for 𝑄.

Then, we have:

(38) P(𝑄 > 𝑐) − P(𝑄 < −𝑐) = ∫
+∞

𝑐
𝜙(𝑞)d𝑞−∫

−𝑐

−∞
𝜙(𝑞)d𝑞

> ∫
+∞

𝑐
𝜙(−𝑞)d𝑞−∫

−𝑐

−∞
𝜙(𝑞)d𝑞 (BA)

> ∫
−𝑐

−∞
𝜙(𝑞)d𝑞−∫

−𝑐

−∞
𝜙(𝑞)d𝑞

> 0.

And:

(39) E[𝑄 | |𝑄| < 𝑐] = 1
P(|𝑄| < 𝑐) ∫

𝑐

−𝑐
𝜙(𝑞)𝑞d𝑞

= 1
P(|𝑄| < 𝑐) (∫

0

−𝑐
𝜙(𝑞)𝑞d𝑞+∫

𝑐

0
𝜙(𝑞)𝑞d𝑞)

> 1
P(|𝑄| < 𝑐) (∫

0

−𝑐
𝜙(𝑞)𝑞d𝑞+∫

𝑐

0
𝜙(−𝑞)𝑞d𝑞) (BA)
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> 1
P(|𝑄| < 𝑐) (∫

0

−𝑐
𝜙(𝑞)𝑞d𝑞−∫

0

−𝑐
𝜙(𝑞)𝑞d𝑞)

> 0.
It follows that �̄�(ℳ𝐼) > �̄�(ℳ𝑂), as desired.16

Appendix B Expected utility and the optimality of predicates

We propose a model for a speaker who cares about classifying objects in a
certain category A as being Bs or non-Bs. Let us take the word B to be defined
only on As.17 Having observed a new A, a speaker may want to tell others
about it, and also whether it was a B. In this situation, the universe Ω is
partitioned into two sets:

(40) nb: The A isn’t a B.
b: The A is a B.

We ignore here the possibility of compositionally complex messages such as
“A but not B”.18 Thus we assume there are two possible messages:

16 The result that �̄�(ℳ𝐼) > �̄�(ℳ𝑂) still holds if, as suggested in Footnote 4, we make the
assumption that speakers are only approximately rational, and that they pick their messages
stochastically following a soft-max rule, as in the standard RSA model. While we do not
provide a full proof, this follows from the following facts: (a) if 𝑃′

0 and 𝑃″
0 are mirror images

as in (26), then the expected utility achieved by speakers of ℳ𝐼 when 𝑃0 = 𝑃′
0 is the same

as the expected utility achieved by speakers of ℳ𝑂 when 𝑃0 = 𝑃″
0 , and vice-versa, and (b) if

𝑃0 is such that 𝑃0(𝑤¬∃) > 𝑃0(𝑤∀), then speakers of ℳ𝐼 achieve higher utility than speakers
of ℳ𝑂 in the situation ⟨𝑤∃¬∀; 𝑃0⟩.

However, once the assumption of total rationality is relaxed, we can no longer conclude
from this technical result that ℳ𝐼 is the optimal language. Indeed, recall that �̄� represents
the conditional expected utility, as obtained if we only consider 𝑤∃¬∀-situations. With full
rationality, we can ignore the other two situations (𝑤∀ and 𝑤¬∃), as speakers of both lan-
guages have the exact same strategy. Under the soft-max rule, however, this is no longer the
case: speakers of either language can now use non-optimal messages in such situations (i.e.,
they can use 𝐼 in 𝑤∀ and 𝑂 in 𝑤¬∃). Thus, we can no longer conclude that the comparison
in terms of expected utility will go the same way as the comparison in terms of conditional
expected utility. Hence, our proof does not generalize to a model where speakers are only
approximately rational.

17 This is a simplification. In a more realistic model, As and Bs would be subclasses of say, Cs.
Assuming that B denotes a minority of Cs, if subclasses of C that get their own word are
reasonably widely distributed over subsets of C, then B ought to also denote a minority of
most of them. Thus the conclusion that most of the time, B ought to denote a subset of A
doesn’t crucially depend on the assumption that B is defined on As.

18 A more complete model could integrate complex messages, but it would make our calcula-
tions much more complex. A simple approach could be to include them, but assign to them
a prohibitive cost.
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(41) 𝐴: “A!”
𝐵: “B!”

Their semantics are the obvious ones:

(42) J𝐴K = ΩJ𝐵K = b

We assume that they have the same cost, which allows us to simply ignore
the cost term again. It is straightforward to verify that 𝑆1 will always say 𝐵 in
a world in b, and 𝐴 in a world in nb. We can then compute the expected utility
of the message used by 𝑆1 when she encounters an 𝐴 and says something
about it. This quantity expresses how useful their utterance is on average.
We assume that the prior distribution over world-states is fixed and given by
𝑃0. It represents both the actual probability that the 𝐴 that 𝑆1 encounters is
a 𝐵, and the prior beliefs of the listener, who has not observed anything yet
but has certain expectations before receiving information from 𝑆1.

(43) E𝑤[𝑈𝑆(𝑆(𝑤;𝐿0)|𝑤; 𝐿0)]=∑
𝑤∈b

𝑃0(𝑤)𝑈𝑆(𝐵|𝑤;𝐿0)+∑
𝑤∈nb

𝑃0(𝑤)𝑈𝑆(𝐴|𝑤;𝐿0)

=∑
𝑤∈b

𝑃0(𝑤) log 𝑃0(𝑤)
𝑃0(𝐵)

+ ∑
𝑤∈nb

𝑃0(𝑤) log 𝑃0(𝑤)
𝑃0(𝐴)

=

−𝐻(𝑃0)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
𝑤

𝑃0(𝑤) log𝑃0(𝑤)− log𝑃0(𝐵)

𝑃0(𝐵)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
𝑤∈b

𝑃0(𝑤)

− log𝑃0(𝐴)⏟⏟⏟
1

∑
𝑤∈nb

𝑃0(𝑤)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1−𝑃0(𝐵)

=−𝐻(𝑃0) − 𝑃0(𝐵) log𝑃0(𝐵).

The first term does not depend on the lexicon: 𝐻(𝑃0) depends solely on 𝑃0,
which is a parameter of the discourse context. However, the second term
depends on what 𝐵 means. In particular, imagine that speakers find them-
selves wanting to draw a new distinction within As, based on a specific bi-
nary feature. They could adopt a new word 𝐵+, which refers to all As that
have the feature one way, or 𝐵−, referring to all As that have it the other
way. This choice would have a consequence on the expected utility in (43),
as the value of 𝑃0(𝐵) wouldn’t be the same: it could be either 𝑃0(𝐵+), or
𝑃0(𝐵−) = 1−𝑃0(𝐵+). Then, we would expect speakers to actually adopt as 𝐵
whichever term maximizes expected utility. We can verify that it is the rarer
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of the two: if 𝑃0(𝐵+) > 0.5, it is optimal to choose 𝐵− for 𝐵; if 𝑃0(𝐵+) < 0.5,
it is optimal to choose 𝐵+ for 𝐵. Thus, in the end, it is always optimal to have
𝑃0(𝐵) < 0.5. We therefore expect that a concept 𝐵 is more likely to be lexi-
calized than its negation ¬𝐵 if, for most natural categories 𝐴 within which
distinguishing 𝐵𝑠 from non-𝐵𝑠 would be relevant, a random 𝐴-individual is
typically less likely to be a 𝐵 than a non-𝐵. We do not predict through this
reasoning that the prior of 𝐵 should be particularly low, only that it should
be below 0.5. Such a weak prediction is desirable given our discussion in
Section 2.3.19

References

Barwise, Jon & Robin Cooper. 1981. Generalized quantifiers and natural lan-
guage. Linguistics and Philosophy 4(2). 159–219. https://doi.org/10.1007
/BF00350139.

Benz, Anton & Robert Van Rooij. 2007. Optimal assertions, and what they
implicate. Topoi 26(1). 63–78. https://doi.org/10.1007/s11245-006-9007-
3.

Bergen, Leon, Roger Levy & Noah D. Goodman. 2016. Pragmatic reasoning
through semantic inference. Semantics and Pragmatics 9(20). https://do
i.org/10.3765/sp.9.20.

Buccola, Brian & Benjamin Spector. 2016. Modified numerals and maximality.
Linguistics and Philosophy 39(3). 151–199. https://doi.org/10.1007/s1098
8-016-9187-2.

Chater, Nick & Mike Oaksford. 1999. The probability heuristics model of syl-
logistic reasoning. Cognitive psychology 38(2). 191–258. https://doi.org/1
0.1006/cogp.1998.0696.

Chemla, Emmanuel, Brian Buccola & Isabelle Dautriche. 2019. Connecting
content and logical words. Journal of Semantics 36(3). 531–547. https://d
oi.org/10.1093/jos/ffz001.

Denić, Milica, Shane Steinert-Threlkeld & Jakub Szymanik. 2021. Complexity
/ informativeness trade-off in the domain of indefinite pronouns. Seman-

19 Qing & Franke (2014) also use expected utility to explain why gradable adjectives such as
tall, whose denotation seems to involve an unspecified threshold, still receive a non-trivial
interpretation: their idea is that the threshold is expected by speakers to be set in such a
way as to maximize expected utility. In fact, if one combines their idea with our definition
of utility, it can be proven that a word like tall will optimally be true of a (large) minority of
a given comparison class.

5:29

https://doi.org/10.1007/BF00350139
https://doi.org/10.1007/BF00350139
https://doi.org/10.1007/s11245-006-9007-3
https://doi.org/10.1007/s11245-006-9007-3
https://doi.org/10.3765/sp.9.20
https://doi.org/10.3765/sp.9.20
https://doi.org/10.1007/s10988-016-9187-2
https://doi.org/10.1007/s10988-016-9187-2
https://doi.org/10.1006/cogp.1998.0696
https://doi.org/10.1006/cogp.1998.0696
https://doi.org/10.1093/jos/ffz001
https://doi.org/10.1093/jos/ffz001


Émile Enguehard, Benjamin Spector

tics and Linguistic Theory (SALT) 30. 166–184. https://doi.org/10.3765/s
alt.v30i0.4811.

Franke, Michael. 2011. Quantity implicatures, exhaustive interpretation, and
rational conversation. Semantics and Pragmatics 4(1). 1–82. https://doi.o
rg/10.3765/sp.4.1.

Gärdenfors, Peter. 2004. Conceptual spaces: The geometry of thought. Cam-
bridge, MA: MIT Press.

Geurts, Bart & Frans van Der Slik. 2005. Monotonicity and processing load.
Journal of semantics 22(1). 97–117. https://doi.org/10.1093/jos/ffh018.

Gibson, Edward, Richard Futrell, Steven T. Piantadosi, Isabelle Dautriche, Kyle
Mahowald, Leon Bergen & Roger Levy. 2019. How efficiency shapes human
language. Trends in cognitive sciences 23(5). 389–407. https://doi.org/10
.1016/j.tics.2019.02.003.

Goodman, Noah D. & Andreas Stuhlmüller. 2013. Knowledge and implicature:
Modeling language understanding as social cognition. Topics in cognitive
science 5(1). 173–184. https://doi.org/10.1111/tops.12007.

Haspelmath, Martin. 2001. Indefinite pronouns. Oxford: Oxford University
Press. https://doi.org/10.1093/oso/9780198235606.001.0001.

Hendrickson, Andrew T. & Andrew Perfors. 2019. Cross-situational learning
in a zipfian environment. Cognition 189. 11–22. https://doi.org/10.1016/j
.cognition.2019.03.005.

Horn, Laurence Robert. 1973. On the semantic properties of logical operators
in English. University of California in Los Angeles dissertation.

Katzir, Roni, Nur Lan & Noa Peled. 2020. A note on the representation and
learning of quantificational determiners. Sinn und Bedeutung (SuB) 24(1).
392–410. https://doi.org/10.18148/sub/2020.v24i1.874.

Katzir, Roni & Raj Singh. 2013. Constraints on the lexicalization of logical
operators. Linguistics and Philosophy 36(1). 1–29. https://doi.org/10.100
7/s10988-013-9130-8.

Kemp, Charles & Terry Regier. 2012. Kinship categories across languages re-
flect general communicative principles. Science 336(6084). 1049–1054. h
ttps://doi.org/10.1126/science.1218811.

Kennedy, Christopher. 2007. Vagueness and grammar: The semantics of rel-
ative and absolute gradable adjectives. Linguistics and philosophy 30(1).
1–45. https://doi.org/10.1007/s10988-006-9008-0.

Penka, Doris. 2011. Negative indefinites. Oxford: Oxford University Press.
Piantadosi, Steven T., Harry Tily & Edward Gibson. 2011. Word lengths are op-

timized for efficient communication. Proceedings of the National Acade-

5:30

https://doi.org/10.3765/salt.v30i0.4811
https://doi.org/10.3765/salt.v30i0.4811
https://doi.org/10.3765/sp.4.1
https://doi.org/10.3765/sp.4.1
https://doi.org/10.1093/jos/ffh018
https://doi.org/10.1016/j.tics.2019.02.003
https://doi.org/10.1016/j.tics.2019.02.003
https://doi.org/10.1111/tops.12007
https://doi.org/10.1093/oso/9780198235606.001.0001
https://doi.org/10.1016/j.cognition.2019.03.005
https://doi.org/10.1016/j.cognition.2019.03.005
https://doi.org/10.18148/sub/2020.v24i1.874
https://doi.org/10.1007/s10988-013-9130-8
https://doi.org/10.1007/s10988-013-9130-8
https://doi.org/10.1126/science.1218811
https://doi.org/10.1126/science.1218811
https://doi.org/10.1007/s10988-006-9008-0


Explaining gaps in the logical lexicon of natural languages

my of Sciences 108(9). 3526–3529. https://doi.org/10.1073/pnas.10125511
08.

Qing, Ciyang & Michael Franke. 2014. Gradable adjectives, vagueness, and
optimal language use: A speaker-orientedmodel. Semantics and Linguistic
Theory (SALT) 24. 23–41. https://doi.org/10.3765/salt.v24i0.2412.

Steinert-Threlkeld, Shane. 2020. Quantifiers in natural language optimize the
simplicity/informativeness trade-off. Amsterdam colloquium 22. 513–522.
https://archive.illc.uva.nl/AC/AC2019/uploaded_files/inlineitem/1AC20
19_Proceedings.pdf.

Steinert-Threlkeld, Shane & Jakub Szymanik. 2019. Learnability and semantic
universals. Semantics and Pragmatics 12(4). https://doi.org/10.3765/sp.1
2.4.

Uegaki, Wataru. Forthcoming. The informativeness/ complexity trade-off in
the domain of boolean connectives. Linguistic Inquiry. https://doi.org/1
0.1162/ling_a_00461.

Zaslavsky, Noga, Charles Kemp, Terry Regier & Naftali Tishby. 2018. Efficient
compression in color naming and its evolution. Proceedings of the Na-
tional Academy of Sciences 115(31). 7937–7942. https://doi.org/10.1073/p
nas.1800521115.

Zaslavsky, Noga, Terry Regier, Naftali Tishby & Charles Kemp. 2019. Semantic
categories of artifacts and animals reflect efficient coding. Annual Con-
ference of the Cognitive Science Society (CogSci) 41. 1254–1260. https://d
oi.org/10.48550/arXiv.1905.04562.

Zeijlstra, Hedde. 2011. On the syntactically complex status of negative indef-
inites. The Journal of Comparative Germanic Linguistics 14(2). 111–138.
https://doi.org/10.1007/s10828-011-9043-2.

Zipf, George K. 1935. The psychobiology of language. Boston, MA: Houghton
Mifflin.

Émile Enguehard
Institut Jean Nicod
29 rue d’Ulm
75005 Paris, France
emile.enguehard@ens.fr

Benjamin Spector
Institut Jean Nicod
29 rue d’Ulm
75005 Paris, France
spector.benjamin@gmail.com

5:31

https://doi.org/10.1073/pnas.1012551108
https://doi.org/10.1073/pnas.1012551108
https://doi.org/10.3765/salt.v24i0.2412
https://archive.illc.uva.nl/AC/AC2019/uploaded_files/inlineitem/1AC2019_Proceedings.pdf
https://archive.illc.uva.nl/AC/AC2019/uploaded_files/inlineitem/1AC2019_Proceedings.pdf
https://doi.org/10.3765/sp.12.4
https://doi.org/10.3765/sp.12.4
https://doi.org/10.1162/ling_a_00461
https://doi.org/10.1162/ling_a_00461
https://doi.org/10.1073/pnas.1800521115
https://doi.org/10.1073/pnas.1800521115
https://doi.org/10.48550/arXiv.1905.04562
https://doi.org/10.48550/arXiv.1905.04562
https://doi.org/10.1007/s10828-011-9043-2
mailto:emile.enguehard@ens.fr
mailto:spector.benjamin@gmail.com

