Probabilistic modeling of rational communication with conditionals
Main Article Content
Abstract
While a large body of work has scrutinized the meaning of conditional sentences, considerably less attention has been paid to formal models of their pragmatic use and interpretation. Here, we take a probabilistic approach to pragmatic reasoning about indicative conditionals which flexibly integrates gradient beliefs about richly structured world states. We model listeners’ update of their prior beliefs about the causal structure of the world and the joint probabilities of the consequent and antecedent based on assumptions about the speaker’s utterance production protocol. We show that, when supplied with natural contextual assumptions, our model uniformly explains a number of inferences attested in the literature, including epistemic inferences, conditional perfection and the dependency between antecedent and consequent of a conditional. We argue that this approach also helps explain three puzzles introduced by Douven (2012) about updating with conditionals: depending on the utterance context, the listener’s belief in the antecedent may increase, decrease or remain unchanged.
EARLY ACCESS
Article Details

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Articles appearing in Semantics and Pragmatics are published under an author agreement with the Linguistic Society of America and are made available to readers under a Creative Commons Attribution License.